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– The principles of reliability analysis and its execution in Stata.

– The concept of structural equation modeling.

8.1 Introduction

Principal component analysis (PCA) and factor analysis (also called principal

factor analysis or principal axis factoring) are two methods for identifying

structure within a set of variables. Many analyses involve large numbers of

variables that are difficult to interpret. Using PCA or factor analysis helps find

interrelationships between variables (usually called items) to find a smaller number

of unifying variables called factors. Consider the example of a soccer club whose

management wants to measure the satisfaction of the fans. The management could,

for instance, measure fan satisfaction by asking how satisfied the fans are with the

(1) assortment of merchandise, (2) quality of merchandise, and (3) prices of

merchandise. It is likely that these three items together measure satisfaction with

the merchandise. Through the application of PCA or factor analysis, we can

determine whether a single factor represents the three satisfaction items well.

Practically, PCA and factor analysis are applied to understand much larger sets of

variables, tens or even hundreds, when just reading the variables’ descriptions does

not determine an obvious or immediate number of factors.

PCA and factor analysis both explain patterns of correlations within a set of

observed variables. That is, they identify sets of highly correlated variables and

infer an underlying factor structure. While PCA and factor analysis are very similar

in the way they arrive at a solution, they differ fundamentally in their assumptions

of the variables’ nature and their treatment in the analysis. Due to these differences,

the methods follow different research objectives, which dictate their areas of

application. While the PCA’s objective is to reproduce a data structure, as well

as possible only using a few factors, factor analysis aims to explain the variables’

correlations by means of factors (e.g., Hair et al. 2013; Matsunaga 2010; Mulaik

2009).1 We will discuss these differences and their implications in this chapter.

Both PCA and factor analysis can be used for exploratory or confirmatory

purposes. What are exploratory and confirmatory factor analyses? Comparing the

left and right panels of Fig. 8.1 shows us the difference. Exploratory factor

analysis, often simply referred to as EFA, does not rely on previous ideas on the

factor structure we may find. That is, there may be relationships (indicated by the

arrows) between each factor and each item. While some of these relationships may

be weak (indicated by the dotted arrows), others are more pronounced, suggesting

that these items represent an underlying factor well. The left panel of Fig. 8.1

illustrates this point. Thus, an exploratory factor analysis reveals the number of

factors and the items belonging to a specific factor. In a confirmatory factor

1Other methods for carrying out factor analyses include, for example, unweighted least squares,

generalized least squares, or maximum likelihood. However, these are statistically complex and

inexperienced users should not consider them.
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analysis, usually simply referred to as CFA, there may only be relationships

between a factor and specific items. In the right panel of Fig. 8.1, the first three

items relate to factor 1, whereas the last two items relate to factor 2. Different from

the exploratory factor analysis, in a confirmatory factor analysis, we have clear

expectations of the factor structure (e.g., because researchers have proposed a scale

that we want to adapt for our study) and we want to test for the expected structure.

In this chapter, we primarily deal with exploratory factor analysis, as it conveys

the principles that underlie all factor analytic procedures and because the two

techniques are (almost) identical from a statistical point of view. Nevertheless,

we will also discuss an important aspect of confirmatory factor analysis, namely

reliability analysis, which tests the consistency of a measurement scale (see

Chap. 3). We will also briefly introduce a specific confirmatory factor analysis

approach called structural equation modeling (often simply referred to as SEM).

Structural equation modeling differs statistically and practically from PCA and

factor analysis. It is not only used to evaluate how well observed variables relate to

factors but also to analyze hypothesized relationships between factors that the

researcher specifies prior to the analysis based on theory and logic.

8.2 Understanding Principal Component and Factor Analysis

8.2.1 Why Use Principal Component and Factor Analysis?

Researchers often face the problem of large questionnaires comprising many items.
For example, in a survey of a major German soccer club, the management was

particularly interested in identifying and evaluating performance features that relate

to soccer fans’ satisfaction (Sarstedt et al. 2014). Examples of relevant features

include the stadium, the team composition and their success, the trainer, and the

Fig. 8.1 Exploratory factor analysis (left) and confirmatory factor analysis (right)
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management. The club therefore commissioned a questionnaire comprising 99 pre-

viously identified items by means of literature databases and focus groups of fans.

All the items were measured on scales ranging from 1 (“very dissatisfied”) to

7 (“very satisfied”). Table 8.1 shows an overview of some items considered in the

study.

As you can imagine, tackling such a large set of items is problematic, because it

provides quite complex data. Given the task of identifying and evaluating perfor-

mance features that relate to soccer fans’ satisfaction (measured by “Overall, how

satisfied are you with your soccer club”), we cannot simply compare the items on a

pairwise basis. It is far more reasonable to consider the factor structure first. For

example, satisfaction with the condition of the stadium (x1), outer appearance of the
stadium (x2), and interior design of the stadium (x3) cover similar aspects that relate

to the respondents’ satisfaction with the stadium. If a soccer fan is generally very

satisfied with the stadium, he/she will most likely answer all three items positively.

Conversely, if a respondent is generally dissatisfied with the stadium, he/she is most

likely to be rather dissatisfied with all the performance aspects of the stadium, such

as the outer appearance and interior design. Consequently, these three items are

likely to be highly correlated—they cover related aspects of the respondents’

overall satisfaction with the stadium. More precisely, these items can be interpreted

Table 8.1 Items in the soccer fan satisfaction study

Satisfaction with. . .

Condition of the stadium Public appearances of the players

Interior design of the stadium Number of stars in the team

Outer appearance of the stadium Interaction of players with fans

Signposting outside the stadium Volume of the loudspeakers in the stadium

Signposting inside the stadium Choice of music in the stadium

Roofing inside the stadium Entertainment program in the stadium

Comfort of the seats Stadium speaker

Video score boards in the stadium Newsmagazine of the stadium

Condition of the restrooms Price of annual season ticket

Tidiness within the stadium Entry fees

Size of the stadium Offers of reduced tickets

View onto the playing field Design of the home jersey

Number of restrooms Design of the away jersey

Sponsors’ advertisements in the stadium Assortment of merchandise

Location of the stadium Quality of merchandise

Name of the stadium Prices of merchandise

Determination and commitment of the players Pre-sale of tickets

Current success regarding matches Online-shop

Identification of the players with the club Opening times of the fan-shops

Quality of the team composition Accessibility of the fan-shops

Presence of a player with whom fans can

identify

Behavior of the sales persons in the fan

shops
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as manifestations of the factor capturing the “joint meaning” of the items related to

it. The arrows pointing from the factor to the items in Fig. 8.1 indicate this point. In

our example, the “joint meaning” of the three items could be described as satisfac-
tion with the stadium, since the items represent somewhat different, yet related,

aspects of the stadium. Likewise, there is a second factor that relates to the two

items x4 and x5, which, like the first factor, shares a common meaning, namely

satisfaction with the merchandise.
PCA and factor analysis are two statistical procedures that draw on item

correlations in order to find a small number of factors. Having conducted the

analysis, we can make use of few (uncorrelated) factors instead of many variables,

thus significantly reducing the analysis’s complexity. For example, if we find six

factors, we only need to consider six correlations between the factors and overall

satisfaction, which means that the recommendations will rely on six factors.

8.2.2 Analysis Steps

Like any multivariate analysis method, PCA and factor analysis are subject to

certain requirements, which need to be met for the analysis to be meaningful. A

crucial requirement is that the variables need to exhibit a certain degree of correla-

tion. In our example in Fig. 8.1, this is probably the case, as we expect increased

correlations between x1, x2, and x3, on the one hand, and between x4 and x5 on the

other. Other items, such as x1 and x4, are probably somewhat correlated, but to a

lesser degree than the group of items x1, x2, and x3 and the pair x4 and x5. Several
methods allow for testing whether the item correlations are sufficiently high.

Both PCA and factor analysis strive to reduce the overall item set to a smaller set

of factors. More precisely, PCA extracts factors such that they account for

variables’ variance, whereas factor analysis attempts to explain the correlations

between the variables. Whichever approach you apply, using only a few factors

instead of many items reduces its precision, because the factors cannot represent all

the information included in the items. Consequently, there is a trade-off between

simplicity and accuracy. In order to make the analysis as simple as possible, we

want to extract only a few factors. At the same time, we do not want to lose too

much information by having too few factors. This trade-off has to be addressed in

any PCA and factor analysis when deciding how many factors to extract from

the data.

Once the number of factors to retain from the data has been identified, we can

proceed with the interpretation of the factor solution. This step requires us to

produce a label for each factor that best characterizes the joint meaning of all the

variables associated with it. This step is often challenging, but there are ways of

facilitating the interpretation of the factor solution. Finally, we have to assess how

well the factors reproduce the data. This is done by examining the solution’s

goodness-of-fit, which completes the standard analysis. However, if we wish to

continue using the results in further analyses, we need to calculate the factor scores.
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Factor scores are linear combinations of the items and can be used as variables in

follow-up analyses.

Figure 8.2 illustrates the steps involved in the analysis; we will discuss these in

more detail in the following sections. In doing so, our theoretical descriptions will

focus on the PCA, as this method is easier to grasp. However, most of our

descriptions also apply to factor analysis. Our illustration at the end of the chapter

also follows a PCA approach but uses a Stata command (factor, pcf), which
blends the PCA and factor analysis. This blending has several advantages, which

we will discuss later in this chapter.

8.3 Principal Component Analysis

8.3.1 Check Requirements and Conduct Preliminary Analyses

Before carrying out a PCA, we have to consider several requirements, which we can

test by answering the following questions:

– Are the measurement scales appropriate?

– Is the sample size sufficiently large?

– Are the observations independent?

– Are the variables sufficiently correlated?

Fig. 8.2 Steps involved in a PCA

270 8 Principal Component and Factor Analysis



Are the measurement scales appropriate?
For a PCA, it is best to have data measured on an interval or ratio scale. In practical

applications, items measured on an ordinal scale level have become common.

Ordinal scales can be used if:

– the scale points are equidistant, which means that the difference in the wording

between scale steps is the same (see Chap. 3), and
– there are five or more response categories.

Is the sample size sufficiently large?
Another point of concern is the sample size. As a rule of thumb, the number of

(valid) observations should be at least ten times the number of items used for

analysis. This only provides a rough indication of the necessary sample size.

Fortunately, researchers have conducted studies to determine minimum sample

size requirements, which depend on other aspects of the study. MacCallum et al.

(1999) suggest the following:

– When all communalities (we will discuss this term in Sect. 8.3.2.4) are above

0.60, small sample sizes of below 100 are adequate.

– With communalities around 0.50, sample sizes between 100 and 200 are

sufficient.

– When communalities are consistently low, with many or all under 0.50, a sample

size between 100 and 200 is adequate if the number of factors is small and each

of these is measured with six or more indicators.

– When communalities are consistently low and the factors numbers are high or

are measured with only few indicators (i.e., 3 or less), 300 observations are

recommended.

Are the observations independent?
We have to ensure that the observations are independent. This means that the

observations need to be completely unrelated (see Chap. 3). If we use dependent

observations, we would introduce “artificial” correlations, which are not due to an

underlying factor structure, but simply to the same respondents answered the same

questions multiple times.

Are the variables sufficiently correlated?
As indicated before, PCA is based on correlations between items. Consequently,

conducting a PCA only makes sense if the items correlate sufficiently. The problem

is deciding what “sufficient” actually means.

An obvious step is to examine the correlation matrix (Chap. 5). Naturally, we

want the correlations between different items to be as high as possible, but they

will not always be. In our previous example, we expect high correlations between

x1, x2, and x3, on the one hand, and x4 and x5 on the other. Conversely, we might
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expect lower correlations between, for example, x1 and x4 and between x3 and x5.
Thus, not all of the correlation matrix’s elements need to have high values. The

PCA depends on the relative size of the correlations. Therefore, if single

correlations are very low, this is not necessarily problematic! Only when all the

correlations are around zero is PCA no longer useful. In addition, the statistical

significance of each correlation coefficient helps decide whether it differs signifi-

cantly from zero.

There are additional measures to determine whether the items correlate suffi-

ciently. One is the anti-image. The anti-image describes the portion of an item’s

variance that is independent of another item in the analysis. Obviously, we want all

items to be highly correlated, so that the anti-images of an item set are as small as

possible. Initially, we do not interpret the anti-image values directly, but use a

measure based on the anti-image concept: The Kaiser–Meyer–Olkin (KMO)

statistic. The KMO statistic, also called the measure of sampling adequacy

(MSA), indicates whether the other variables in the dataset can explain the

correlations between variables. Kaiser (1974), who introduced the statistic,

recommends a set of distinctively labeled threshold values for KMO and MSA,

which Table 8.2 presents.

To summarize, the correlation matrix with the associated significance levels

provides a first insight into the correlation structures. However, the final decision of

whether the data are appropriate for PCA should be primarily based on the KMO

statistic. If this measure indicates sufficiently correlated variables, we can continue

the analysis of the results. If not, we should try to identify items that correlate only

weakly with the remaining items and remove them. In Box 8.1, we discuss how to

do this.

Box 8.1 Identifying Problematic Items

Examining the correlation matrix and the significance levels of correlations

allows identifying items that correlate only weakly with the remaining items.

An even better approach is examining the variable-specific MSA values,

which are interpreted like the overall KMO statistic (see Table 8.2). In fact,

the KMO statistic is simply the overall mean of all variable-specific MSA

values. Consequently, all the MSA values should also lie above the threshold

(continued)

Table 8.2 Threshold

values for KMO and MSA
KMO/MSA value Adequacy of the correlations

Below 0.50 Unacceptable

0.50–0.59 Miserable

0.60–0.69 Mediocre

0.70–0.79 Middling

0.80–0.89 Meritorious

0.90 and higher Marvelous
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Box 8.1 (continued)

level of 0.50. If this is not the case, consider removing this item from the

analysis. An item’s communality or uniqueness (see next section) can also

serve as a useful indicators of how well the factors extracted represent an

item. However, communalities and uniqueness are mostly considered when

evaluating the solution’s goodness-of-fit.

8.3.2 Extract the Factors

8.3.2.1 Principal Component Analysis vs. Factor Analysis
Factor analysis assumes that each variable’s variance can be divided into common

variance (i.e., variance shared with all the other variables in the analysis) and

unique variance (Fig. 8.3), the latter of which can be further broken down into

specific variance (i.e., variance associated with only one specific variable) and error

variance (i.e., variance due to measurement error). The method, however, can only

reproduce common variance. Thereby factor analysis explicitly recognizes the

presence of error. Conversely, PCA assumes that all of each variable’s variance is

common variance, which factor extraction can explain fully (e.g., Preacher and

MacCallum 2003). These differences entail different interpretations of the

analysis’s outcomes. PCA asks:

Which umbrella term can we use to summarize a set of variables that loads highly on a
specific factor?

Conversely, factor analysis asks:

What is the common reason for the strong correlations between a set of variables?

From a theoretical perspective, the assumption that there is a unique variance for

which the factors cannot fully account, is generally more realistic, but simulta-

neously more restrictive. Although theoretically sound, this restriction can some-

times lead to complications in the analysis, which have contributed to the

widespread use of PCA, especially in market research practice.

Researchers usually suggest using PCA when data reduction is the primary

concern; that is, when the focus is to extract a minimum number of factors that

account for a maximum proportion of the variables’ total variance. In contrast, if the

primary concern is to identify latent dimensions represented in the variables, factor

analysis should be applied. However, prior research has shown that both approaches

arrive at essentially the same result when:

– more than 30 variables are used, or
– most of the variables’ communalities exceed 0.60.

8.3 Principal Component Analysis 273



With 20 or fewer variables and communalities below 0.40—which are clearly

undesirable in empirical research—the differences are probably pronounced

(Stevens 2009).

Apart from these conceptual differences in the variables’ nature, PCA and factor

analysis differ in the aim of their analysis. Whereas the goal of factor analysis is to

explain the correlations between the variables, PCA focuses on explaining the

variables’ variances. That is, the PCA’s objective is to determine the linear

combinations of the variables that retain as much information from the original

variables as possible. Strictly speaking, PCA does not extract factors, but

components, which are labeled as such in Stata.

Despite these differences, which have very little relevance in many common

research settings in practice, PCA and factor analysis have many points in common.

For example, the methods follow very similar ways to arrive at a solution and their

interpretations of statistical measures, such as KMO, eigenvalues, or factor

loadings, are (almost) identical. In fact, Stata blends these two procedures in its

factor, pcf command, which runs a factor analysis but rescales the estimates

such that they conform to a PCA. That way, the analysis assumes that the entire

variance is common but produces (rotated) loadings (we will discuss factor rotation

later in this chapter), which facilitate the interpretation of the factors. In contrast, if

we would run a standard PCA, Stata would only offer us eigenvectors whose

(unrotated) weights would not allow for a concluding interpretation of the factors.

In fact, in many PCA analyses, researchers are not interested in the interpretation of

the extracted factors but merely use the method for data reduction. For example, in

sensory marketing research, researchers routinely use PCA to summarize a large set

of sensory variables (e.g., haptic, smell, taste) to derive a set of factors whose scores

are then used as input for cluster analyses (Chap. 9). This approach allows for

identifying distinct groups of products from which one or more representative

products can then be chosen for a more detailed comparison using qualitative

Fig. 8.3 Principal component analysis vs. factor analysis
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research or further assessment in field experiments (e.g., Carbonell et al. 2008;

Vigneau and Qannari 2002).

Despite the small differences of PCA and factor analysis in most research

settings, researchers have strong feelings about the choice of PCA or factor

analysis. Cliff (1987, p. 349) summarizes this issue well, by noting that proponents

of factor analysis “insist that components analysis is at best a common factor

analysis with some error added and at worst an unrecognizable hodgepodge of

things from which nothing can be determined.” For further discussions on this

topic, see also Velicer and Jackson (1990) and Widaman (1993).2

8.3.2.2 How Does Factor Extraction Work?
PCA’s objective is to reproduce a data structure with only a few factors. PCA does

this by generating a new set of factors as linear composites of the original variables,

which reproduces the original variables’ variance as best as possible. These linear

composites are called principal components, but, for simplicity’s sake, we refer to

them as factors. More precisely, PCA computes eigenvectors. These eigenvectors

include so called factor weights, which extract the maximum possible variance of

all the variables, with successive factoring continuing until a significant share of the

variance is explained.

Operationally, the first factor is extracted in such a way that it maximizes the

variance accounted for in the variables. We can visualize this easily by examining

the vector space illustrated in Fig. 8.4. In this example, we have five variables (x1–
x5) represented by five vectors starting at the zero point, with each vector’s length

standardized to one. To maximize the variance accounted for, the first factor F1 is

fitted into this vector space in such a way that the sum of all the angles between this

factor and the five variables in the vector space is minimized. We do this to interpret

the angle between two vectors as correlations. For example, if the factor’s vector

and a variable’s vector are congruent, the angle between these two is zero,

Fig. 8.4 Factor extraction

(Note that Fig. 8.4 describes a

special case, as the five

variables are scaled down into

a two-dimensional space. In

this set-up, it would be

possible for the two factors to

explain all five items.

However, in real-life, the five

items span a five-dimensional

vector space.)

2Related discussions have been raised in structural equation modeling, where researchers have

heatedly discussed the strengths and limitations of factor-based and component-based approaches

(e.g., Sarstedt et al. 2016, Hair et al. 2017a, b).
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indicating that the factor and the variable correlate perfectly. On the other hand, if

the factor and the variable are uncorrelated, the angle between these two is 90�. This
correlation between a (unit-scaled) factor and a variable is called the factor
loading. Note that factor weights and factor loadings essentially express the same

thing—the relationships between variables and factors—but they are based on

different scales.

After extracting F1, a second factor (F2) is extracted, which maximizes the

remaining variance accounted for. The second factor is fitted at a 90� angle into

the vector space (Fig. 8.4) and is therefore uncorrelated with the first factor.3 If we

extract a third factor, it will explain the maximum amount of variance for which

factors 1 and 2 have hitherto not accounted. This factor will also be fitted at a 90�

angle to the first two factors, making it independent from the first two factors

(we don’t illustrate this third factor in Fig. 8.4, as this is a three-dimensional space).

The fact that the factors are uncorrelated is an important feature, as we can use them

to replace many highly correlated variables in follow-up analyses. For example,

using uncorrelated factors as independent variables in a regression analysis helps

solve potential collinearity issues (Chap. 7).

The Explained Visually webpage offers an excellent illustration of two- and

three-dimensional factor extraction, see http://setosa.io/ev/principal-compo

nent-analysis/

An important PCA feature is that it works with standardized variables (see

Chap. 5 for an explanation of what standardized variables are). Standardizing

variables has important implications for our analysis in two respects. First, we

can assess each factor’s eigenvalue, which indicates how much a specific factor

extracts all of the variables’ variance (see next section). Second, the standardization

of variables allows for assessing each variable’s communality, which describes how

much the factors extracted capture or reproduce each variable’s variance. A related

concept is the uniqueness, which is 1–communality (see Sect. 8.3.2.4).

8.3.2.3 What Are Eigenvalues?
To understand the concept of eigenvalues, think of the soccer fan satisfaction study

(Fig. 8.1). In this example, there are five variables. As all the variables are

standardized prior to the analysis, each has a variance of 1. In a simplified way,

we could say that the overall information (i.e., variance) that we want to reproduce

by means of factor extraction is 5 units. Let’s assume that we extract the two factors

presented above.

The first factor’s eigenvalue indicates how much variance of the total variance

(i.e., 5 units) this factor accounts for. If this factor has an eigenvalue of, let’s say

3Note that this changes when oblique rotation is used. We will discuss factor rotation later in this

chapter.
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2.10, it covers the information of 2.10 variables or, put differently, accounts for

2.10/5.00 ¼ 42% of the overall variance (Fig. 8.5).

Extracting a second factor will allow us to explain another part of the remaining

variance (i.e., 5.00 – 2.10 ¼ 2.90 units, Fig. 8.5). However, the eigenvalue of the

second factor will always be smaller than that of the first factor. Assume that the

second factor has an eigenvalue of 1.30 units. The second factor then accounts for

1.30/5.00 ¼ 26% of the overall variance. Together, these two factors explain

(2.10 + 1.30)/5.00 ¼ 68% of the overall variance. Every additional factor extracted

increases the variance accounted for until we have extracted as many factors as

there are variables. In this case, the factors account for 100% of the overall

variance, which means that the factors reproduce the complete variance.

Following the PCA approach, we assume that factor extraction can reproduce

each variable’s entire variance. In other words, we assume that each variable’s

variance is common; that is, the variance is shared with other variables. This differs

in factor analysis, in which each variable can also have a unique variance.

8.3.2.4 What Are Communality and Uniqueness?
Whereas the eigenvalue tells us how much variance each factor is accounts for, the

communality indicates how much variance of each variable, factor extraction can

reproduce. There is no commonly agreed threshold for a variable’s communality, as

this depends strongly on the complexity of the analysis at hand. However, gener-

ally, the extracted factors should account for at least 50% of a variable’s variance.

Thus, the communalities should be above 0.50. Note that Stata does not indicate

each variable’s communality but its uniqueness, which is 1–communality. Hence,

uniqueness gives the proportion of a variable’s variance that the factors do not
capture. For uniqueness the same threshold as for communality applies. Thus, the

Fig. 8.5 Total variance explained by variables and factors
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uniqueness values should be below 0.50. Every additional factor extracted will

increase the explained variance, and if we extract as many factors as there are items

(in our example five), each variable’s communality would be 1.00 and its unique-

ness equal to 0. The factors extracted would then fully explain each variable; that is,

the first factor will explain a certain amount of each variable’s variance, the second

factor another part, and so on.

However, since our overall objective is to reduce the number of variables

through factor extraction, we should extract only a few factors that account for a

high degree of overall variance. This raises the question of how to decide on the

number of factors to extract from the data, which we discuss in the following

section.

8.3.3 Determine the Number of Factors

Determining the number of factors to extract from the data is a crucial and

challenging step in any PCA. Several approaches offer guidance in this respect,

but most researchers do not pick just one method, but determine the number of

factors resulting from the application of multiple methods. If multiple methods

suggest the same number of factors, this leads to greater confidence in the results.

8.3.3.1 The Kaiser Criterion
An intuitive way to decide on the number of factors is to extract all the factors with

an eigenvalue greater than 1. The reason for this is that each factor with an

eigenvalue greater than 1 accounts for more variance than a single variable

(remember, we are looking at standardized variables, which is why each variable’s

variance is exactly 1). As the objective of PCA is to reduce the overall number of

variables, each factor should of course account for more variance than a single

variable can. If this occurs, then this factor is useful for reducing the set of variables.

Extracting all the factors with an eigenvalue greater than 1 is frequently called the

Kaiser criterion or latent root criterion and is commonly used to determine the

number of factors. However, the Kaiser criterion is well known for overspecifying

the number of factors; that is, the criterion suggests more factors than it should (e.g.,

Russell 2002; Zwick and Velicer 1986).

8.3.3.2 The Scree Plot
Another popular way to decide on the number of factors to extract is to plot each

factor’s eigenvalue (y-axis) against the factor with which it is associated (x-axis).
This results in a scree plot, which typically has a distinct break in it, thereby

showing the “correct” number of factors (Cattell 1966). This distinct break is called

the “elbow.” It is generally recommended that all factors should be retained above
this break, as they contribute most to the explanation of the variance in the dataset.

Thus, we select one factor less than indicated by the elbow. In Box 8.2, we

introduce a variant of the scree plot. This variant is however only available when

using the pca command instead of the factor, pcf command, which serves as

the basis for our case study illustration.
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Box 8.2 Confidence Intervals in the Scree Plot

A variant of the scree plot includes the confidence interval (Chap. 6,

Sect. 6.6.7) of each eigenvalue. These confidence intervals allow for

identifying factors with an eigenvalue significantly greater than 1. If a

confidence interval’s lower bound is above the 1 threshold, this suggests

that the factor should be extracted. Conversely, if an eigenvalue’s confidence

interval overlaps with the 1 threshold or falls completely below, this factor

should not be extracted.

8.3.3.3 Parallel Analysis
A large body of review papers and simulation studies has produced a prescriptive

consensus that Horn’s (1965) parallel analysis is the best method for deciding how

many factors to extract (e.g., Dinno 2009; Hayton et al. 2004; Henson and Roberts

2006; Zwick and Velicer 1986). The rationale underlying parallel analysis is that

factors from real data with a valid underlying factor structure should have larger

eigenvalues than those derived from randomly generated data (actually pseudoran-

dom deviates) with the same sample size and number of variables.

Parallel analysis involves several steps. First, a large number of datasets are

randomly generated; they have the same number of observations and variables as

the original dataset. Parallel PCAs are then run on each of the datasets (hence,

parallel analysis), resulting in many slightly different sets of eigenvalues. Using

these results as input, parallel analysis derives two relevant cues.

First, parallel analysis adjusts the original eigenvalues for sampling error-

induced collinearity among the variables to arrive at adjusted eigenvalues (Horn

1965). Analogous to the Kaiser criterion, only factors with adjusted eigenvalues

larger than 1 should be retained.

Second, we can compare the randomly generated eigenvalues with those

from the original analysis. Only factors whose original eigenvalues are larger

than the 95th percentile of the randomly generated eigenvalues should be retained

(Longman et al. 1989).

8.3.3.4 Expectations
When, for example, replicating a previous market research study, we might have a

priori information on the number of factors we want to find. For example, if a

previous study suggests that a certain item set comprises five factors, we should

extract the same number of factors, even if statistical criteria, such as the scree plot,

suggest a different number. Similarly, theory might suggest that a certain number of

factors should be extracted from the data.

Strictly speaking, these are confirmatory approaches to factor analysis, which

blur the distinction between these two factor analysis types. Ultimately however,

we should not fully rely on the data, but keep in mind that the research results

should be interpretable and actionable for market research practice.
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When using factor analysis, Stata allows for estimating two further criteria

called the Akaike Information Criterion (AIC) and the Bayes Information

Criterion (BIC). These criteria are relative measures of goodness-of-fit and

are used to compare the adequacy of solutions with different numbers of

factors. “Relative” means that these criteria are not scaled on a range of, for

example, 0 to 1, but can generally take any value. Compared to an alternative

solution with a different number of factors, smaller AIC or BIC values

indicate a better fit. Stata computes solutions for different numbers of factors

(up to the maximum number of factors specified before). We therefore need

to choose the appropriate solution by looking for the smallest value in each

criterion. When using these criteria, you should note that AIC is well known

for overestimating the “correct” number of factors, while BIC has a slight

tendency to underestimate this number.

Whatever combination of approaches we use to determine the number of factors,

the factors extracted should account for at least 50% of the total variance explained

(75% or more is recommended). Once we have decided on the number of factors to

retain from the data, we can start interpreting the factor solution.

8.3.4 Interpret the Factor Solution

8.3.4.1 Rotate the Factors
To interpret the solution, we have to determine which variables relate to each of the

factors extracted. We do this by examining the factor loadings, which represent the
correlations between the factors and the variables and can take values ranging from

�1 to +1. A high factor loading indicates that a certain factor represents a variable

well. Subsequently, we look for high absolute values, because the correlation

between a variable and a factor can also be negative. Using the highest absolute

factor loadings, we “assign” each variable to a certain factor and then produce a

label for each factor that best characterizes the joint meaning of all the variables

associated with it. This labeling is subjective, but a key PCA step. An example of a

label is the respondents’ satisfaction with the stadium, which represents the items

referring to its condition, outer appearance, and interior design (Fig. 8.1).

We can make use of factor rotation to facilitate the factors’ interpretation.4 We

do not have to rotate the factor solution, but it will facilitate interpreting the

findings, particularly if we have a reasonably large number of items (say six or

more). To understand what factor rotation is all about, once again consider the

factor structure described in Fig. 8.4. Here, we see that both factors relate to the

4Note that factor rotation primarily applies to factor analysis rather than PCA—see Preacher and

MacCallum (2003) for details. However, our illustration draws on the factor, pcf command,

which uses the factor analysis algorithm to compute PCA results for which rotation applies.
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variables in the set. However, the first factor appears to generally correlate more

strongly with the variables, whereas the second factor only correlates weakly with

the variables (to clarify, we look for small angles between the factors and

variables). This implies that we “assign” all variables to the first factor without

taking the second into consideration. This does not appear to be very meaningful, as

we want both factors to represent certain facets of the variable set. Factor rotation

can resolve this problem. By rotating the factor axes, we can create a situation in

which a set of variables loads highly on only one specific factor, whereas another

set loads highly on another. Figure 8.6 illustrates the factor rotation graphically.

On the left side of the figure, we see that both factors are orthogonally rotated

49�, meaning that a 90� angle is maintained between the factors during the rotation

procedure. Consequently, the factors remain uncorrelated, which is in line with the

PCA’s initial objective. By rotating the first factor from F1 to F1
0, it is now strongly

related to variables x1, x2, and x3, but weakly related to x4 and x5. Conversely, by
rotating the second factor from F2 to F2

0 it is now strongly related to x4 and x5, but
weakly related to the remaining variables. The assignment of the variables is now

much clearer, which facilitates the interpretation of the factors significantly.

Various orthogonal rotation methods exist, all of which differ with regard to

their treatment of the loading structure. The varimax rotation (the default option

for orthogonal rotation in Stata) is the best-known one; this procedure aims at

maximizing the dispersion of loadings within factors, which means a few variables

will have high loadings, while the remaining variables’ loadings will be consider-

ably smaller (Kaiser 1958).

Alternatively, we can choose between several oblique rotation techniques. In

oblique rotation, the 90� angle between the factors is not maintained during

rotation, and the resulting factors are therefore correlated. Figure 8.6 (right side)

illustrates an example of an oblique factor rotation. Promax rotation (the default

option for oblique rotation in Stata) is a commonly used oblique rotation technique.

The Promax rotation allows for setting an exponent (referred to as Promax power in
Stata) that needs to be greater than 1. Higher values make the loadings even more

extreme (i.e., high loadings are amplified and weak loadings are reduced even

further), which is at the cost of stronger correlations between the factors and less

total variance explained (Hamilton 2013). The default value of 3 works well for

most applications. Oblimin rotation is a popular alternative oblique rotation type.

Fig. 8.6 Orthogonal and oblique factor rotation
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Oblimin is a class of rotation procedures whereby the degree of obliqueness can be

specified. This degree is the gamma, which determines the level of the correlation

allowed between the factors. A gamma of zero (the default) ensures that the factors

are—if at all—only moderately correlated, which is acceptable for most analyses.5

Oblique rotation is used when factors are possibly related. It is, for example,

very likely that the respondents’ satisfaction with the stadium is related to their

satisfaction with other aspects of the soccer club, such as the number of stars in the

team or the quality of the merchandise. However, relinquishing the initial objective

of extracting uncorrelated factors can diminish the factors’ interpretability. We

therefore recommend using the varimax rotation to enhance the interpretability of

the results. Only if the results are difficult to interpret, should an oblique rotation be

applied. Among the oblique rotation methods, researchers generally recommend

the promax (Gorsuch 1983) or oblimin (Kim and Mueller 1978) methods but

differences between the rotation types are typically marginal (Brown 2009).

8.3.4.2 Assign the Variables to the Factors
After rotating the factors, we need to interpret them and give each factor a name,

which has some descriptive value. Interpreting factors involves assigning each vari-

able to a specific factor based on the highest absolute (!) loading. For example, if a

variable has a 0.60 loading with the first factor and a 0.20 loading with the second, we

would assign this variable to the first factor. Loadings may nevertheless be very

similar (e.g., 0.50 for the first factor and 0.55 for the second one), making the

assignment ambiguous. In such a situation, we could assign the variable to another

factor, even though it does not have the highest loading on this specific factor. While

this step can help increase the results’ face validity (see Chap. 3), we shouldmake sure

that the variable’s factor loading with the designated factor is above an acceptable

level. If very few factors have been extracted, the loading should be at least 0.50, but

with a high number of factors, lower loadings of above 0.30 are acceptable. Alterna-

tively, some simply ignore a certain variable if it does not fit with the factor structure.

In such a situation, we should re-run the analysis without variables that do not load

highly on a specific factor. In the end, the results should be interpretable and

actionable, but keep in mind that this technique is, first and foremost, exploratory!

8.3.5 Evaluate the Goodness-of-Fit of the Factor Solution

8.3.5.1 Check the Congruence of the Initial and Reproduced
Correlations

While PCA focuses on explaining the variables’ variances, checking how well the

method approximates the correlation matrix allows for assessing the quality of the

5When the gamma is set to 1, this is a special case, because the value of 1 represents orthogonality.

The result of setting gamma to 1 is effectively a varimax rotation.
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solution (i.e., the goodness-of-fit) (Graffelman 2013). More precisely, to assess the

solution’s goodness-of-fit, we can make use of the differences between the

correlations in the data and those that the factors imply. These differences are

also called correlation residuals and should be as small as possible.

In practice, we check the proportion of correlation residuals with an absolute

value higher than 0.05. Even though there is no strict rule of thumb regarding the

maximum proportion, a proportion of more than 50% should raise concern. How-

ever, high residuals usually go hand in hand with an unsatisfactory KMO measure;

consequently, this problem already surfaces when testing the assumptions.

8.3.5.2 Check How Much of Each Variable’s Variance Is Reproduced
by Means of Factor Extraction

Another way to check the solution’s goodness-of-fit is by evaluating how much of

each variable’s variance the factors reproduce (i.e., the communality). If several

communalities exhibit low values, we should consider removing these variables.

Considering the variable-specific MSA measures could help us make this decision.

If there are more variables in the dataset, communalities usually become smaller;

however, if the factor solution accounts for less than 50% of a variable’s variance

(i.e., the variable’s communality is less than 0.50), it is worthwhile reconsidering

the set-up. Since Stata does not provide communality but uniqueness values, we

have to make this decision in terms of the variance that the factors do not reproduce.
That is, if several variables exhibit uniqueness values larger than 0.50, we should

reconsider the analysis.

8.3.6 Compute the Factor Scores

After the rotation and interpretation of the factors, we can compute the factor

scores, another element of the analysis. Factor scores are linear combinations of the

items and can be used as separate variables in subsequent analyses. For example,

instead of using many highly correlated independent variables in a regression

analysis, we can use few uncorrelated factors to overcome collinearity problems.

The simplest ways to compute factor scores for each observation is to sum all the

scores of the items assigned to a factor. While easy to compute, this approach

neglects the potential differences in each item’s contribution to each factor

(Sarstedt et al. 2016).

Drawing on the eigenvectors that the PCA produces, which include the factor

weights, is a more elaborate way of computing factor scores (Hershberger 2005).

These weights indicate each item’s relative contribution to forming the factor; we

simply multiply the standardized variables’ values with the weights to get the factor

scores. Factor scores computed on the basis of eigenvectors have a zero mean. This

means that if a respondent has a value greater than zero for a certain factor, he/she

scores above the above average in terms of the characteristic that this factor

describes. Conversely, if a factor score is below zero, then this respondent exhibits

the characteristic below average.
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Different from the PCA, a factor analysis does not produce determinate factor

scores. In other words, the factor is indeterminate, which means that part of it

remains an arbitrary quantity, capable of taking on an infinite range of values (e.g.,

Grice 2001; Steiger 1979). Thus, we have to rely on other approaches to computing

factor scores such as the regression method, which features prominently among

factor analysis users. This method takes into account (1) the correlation between the

factors and variables (via the item loadings), (2) the correlation between the

variables, and (3) the correlation between the factors if oblique rotation has been

used (DiStefano et al. 2009). The regression method z-standardizes each factor to

zero mean and unit standard deviation.6 We can therefore interpret an observation’s

score in relation to the mean and in terms of the units of standard deviation from this

mean. For example, an observation’s factor score of 0.79 implies that this observa-

tion is 0.79 standard deviations above the average with regard to the corresponding

factor.

Another popular approach is the Bartlett method, which is similar to the

regression method. The method produces factor scores with zero mean and standard

deviations larger than one. Owing to the way they are estimated, the factor scores

that the Bartlett method produces are considered are considered more accurate

(Hershberger 2005). However, in practical applications, both methods yield highly

similar results. Because of the z-standardization of the scores, which facilitates the

comparison of scores across factors, we recommend using the regression method.

In Table 8.3 we summarize the main steps that need to be taken when conducting

a PCA in Stata. Our descriptions draw on Stata’s factor, pcf command, which

carries out a factor analysis but rescales the resulting factors such that the results

conform to a standard PCA. This approach has the advantage that it follows the

fundamentals of PCA, while allowing for analyses that are restricted to factor

analysis (e.g., factor rotation, use of AIC and BIC).

8.4 Confirmatory Factor Analysis and Reliability Analysis

Many researchers and practitioners acknowledge the prominent role that explor-

atory factor analysis plays in exploring data structures. Data can be analyzed

without preconceived ideas of the number of factors or how these relate to the

variables under consideration. Whereas this approach is, as its name implies,

exploratory in nature, the confirmatory factor analysis allows for testing

hypothesized structures underlying a set of variables.

In a confirmatory factor analysis, the researcher needs to first specify the

constructs and their associations with variables, which should be based on previous

measurements or theoretical considerations.

6Note that this is not the case when using factor analysis if the standard deviations are different

from one (DiStefano et al. 2009).
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Table 8.3 Steps involved in carrying out a PCA in Stata

Theory Stata

Check Assumptions and Carry Out Preliminary Analyses

Select variables that should be reduced to a set

of underlying factors (PCA) or should be used

to identify underlying dimensions (factor

analysis)

► Statistics ► Multivariate analysis ► Factor

and principal component analysis ► Factor

analysis. Enter the variables in the Variables
box.

Are the variables interval or ratio scaled? Determine the measurement level of your

variables (see Chap. 3). If ordinal variables are

used, make sure that the scale steps are

equidistant.

Is the sample size sufficiently large? Check MacCallum et al.’s (1999) guidelines

for minimum sample size requirements,

dependent on the variables’ communality. For

example, if all the communalities are above

0.60, small sample sizes of below 100 are

adequate. With communalities around 0.50,

sample sizes between 100 and 200 are

sufficient.

Are the observations independent? Determine whether the observations are

dependent or independent (see Chap. 3).

Are the variables sufficiently correlated? Check whether at least some of the variable

correlations are significant. ► Statistics ►
Summaries, tables, and tests ► Summary and

descriptive statistics ► Pairwise correlations.

Check Print number of observations for
each entry and Print significance level for
each entry. Select Use Bonferroni-adjusted
significance level to maintain the familywise

error rate (see Chap. 6).

pwcorr s1 s2 s3 s4 s5 s6 s7 s8, obs
sig bonferroni

Is the KMO � 0.50? ► Statistics ►
Postestimation ► Factor analysis reports and

graphs ► Kaiser-Meyer-Olkin measure of

sample adequacy. Then click on Launch and

OK. Note that this analysis can only be run

after the PCA has been conducted.

estat kmo

Extract the factors

Choose the method of factor analysis ► Statistics ► Multivariate analysis ► Factor

and principal component analysis ► Factor

analysis. Click on the Model 2 tab and select

Principal component factor.

factor s1 s2 s3 s4 s5 s6 s7 s8, pcf

Determine the number of factors

Determine the number of factors Kaiser criterion: ► Statistics ► Multivariate

analysis ► Factor and principal component

analysis ► Factor analysis. Click on the

Model 2 tab and enter 1 under Minimum
value of eigenvalues to be retained.

(continued)
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Table 8.3 (continued)

Theory Stata

factor s1 s2 s3 s4 s5 s6 s7 s8 pcf
mineigen (1)

Parallel analysis: Download and install paran
(help paran) and enter paran s1 s2 s3
s4 s5 s6 s7 s8, centile (95) q all
graph

Extract factors (1) with adjusted eigenvalues

greater than 1, and (2) whose adjusted

eigenvalues are greater than the random

eigenvalues.

Scree plot: ► Statistics ► Postestimation ►
Factor analysis reports and graphs ► Scree

plot of eigenvalues. Then click onLaunch and

OK.

screeplot

Pre-specify the number of factors based on a

priori information: ► Statistics ►
Multivariate analysis ► Factor and principal

component analysis ► Factor analysis. Under

the Model 2 tab, tick Maximum number of
factors to be retained and specify a value in

the box below (e.g., 2).

factor s1 s2 s3 s4 s5 s6 s7 s8,
factors(2)

Make sure that the factors extracted account

for at least 50% of the total variance explained

(75% or more is recommended): Check the

Cumulative column in the PCA output.

Interpret the Factor Solution

Rotate the factors Use the varimax procedure or, if necessary,

the promax procedure with gamma set to

3 (both with Kaiser normalization): ►
Statistics ► Postestimation ► Principal

component analysis reports and graphs ►
Rotate factor loadings. Select the

corresponding option in the menu.

Varimax: rotate, kaiser

Promax: rotate, promax(3) oblique
Kaiser

Assign variables to factors Check the Factor loadings (pattern matrix)

table in the output of the rotated solution.

Assign each variable to a certain factor based

on the highest absolute loading. To facilitate

interpretation, you may also assign a variable

to a different factor, but check that the loading

is at an acceptable level (0.50 if only a few

factors are extracted, 0.30 if many factors are

extracted).

Consider making a loadings plot: ► Statistics

► Postestimation ► Factor analysis reports

(continued)
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Instead of allowing the procedure to determine the number of factors, as is done

in an exploratory factor analysis, a confirmatory factor analysis tells us how well the

actual data fit the pre-specified structure. Reverting to our introductory example, we

could, for example, assume that the construct satisfaction with the stadium can be

measured by means of the three items x1 (condition of the stadium), x2 (appearance
of the stadium), and x3 (interior design of the stadium). Likewise, we could

hypothesize that satisfaction with the merchandise can be adequately measured

using the items x4 and x5. In a confirmatory factor analysis, we set up a theoretical

model linking the items with the respective construct (note that in confirmatory

factor analysis, researchers generally use the term construct rather than factor). This

process is also called operationalization (see Chap. 3) and usually involves drawing

a visual representation (called a path diagram) indicating the expected

relationships.

Figure 8.7 shows a path diagram—you will notice the similarity to the diagram

in Fig. 8.1. Circles or ovals represent the constructs (e.g., Y1, satisfaction with the

stadium) and boxes represent the items (x1 to x5). Other elements include the

relationships between the constructs and respective items (the loadings l1 to l5),
the error terms (e1 to e5) that capture the extent to which a construct does not

explain a specific item, and the correlations between the constructs of interest (r12).
Having defined the individual constructs and developed the path diagram, we

can estimate the model. The relationships between the constructs and items (the

loadings l1 to l5) and the item correlations (not shown in Fig. 8.7) are of particular

Table 8.3 (continued)

Theory Stata

and graphs ► Plot of factor loadings. Under

Plot all combinations of the following,
indicate the number of factors for which you

want to plot. Check which items load highly

on which factor.

Compute factor scores Save factor scores as new variables: ►
Statistics ► Postestimation ► Predictions ►
Regression and Bartlett scores. Under New
variable names or variable stub* enter

factor*. Select Factors scored by the
regression scoring method

predict score*, regression

Evaluate the Goodness-of-fit of the Factor Solution

Check the congruence of the initial and

reproduced correlations

Create a reproduced correlation matrix: ►
Statistics ► Postestimation ► Factor analysis

reports and graphs ► Matrix of correlation

residuals. Is the proportion of residuals greater

than 0.05 � 50%?

estat residuals

Check how much of each variable’s variance

is reproduced by means of factor extraction

Check the Uniqueness column in the PCA

output. Are all the values lower than 0.50?
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interest, as they indicate whether the construct has been reliably and validly

measured.

Reliability analysis is an important element of a confirmatory factor analysis and

essential when working with measurement scales. The preferred way to evaluate

reliability is by taking two independent measurements (using the same subjects)

and comparing these by means of correlations. This is also called test-retest

reliability (see Chap. 3). However, practicalities often prevent researchers from

surveying their subjects a second time.

An alternative is to estimate the split-half reliability. In the split-half reliability,

scale items are divided into halves and the scores of the halves are correlated to

obtain an estimate of reliability. Since all items should be consistent regarding what

they indicate about the construct, the halves can be considered approximations of

alternative forms of the same scale. Consequently, instead of looking at the scale’s

test-retest reliability, researchers consider the scale’s equivalence, thus showing the

extent to which two measures of the same general trait agree. We call this type of

reliability the internal consistency reliability.

In the example of satisfaction with the stadium, we compute this scale’s split-

half reliability manually by, for example, splitting up the scale into x1 on the one

side and x2 and x3 on the other. We then compute the sum of x2 and x3 (or calculate
the items’ average) to form a total score and correlate this score with x1. A high

correlation indicates that the two subsets of items measure related aspects of the

same underlying construct and, thus, suggests a high degree of internal consistency.

Fig. 8.7 Path diagram (confirmatory factor analysis)

288 8 Principal Component and Factor Analysis

https://doi.org/10.1007/978-981-10-5218-7_3


However, with many indicators, there are many different ways to split the variables

into two groups.

Cronbach (1951) proposed calculating the average of all possible split-half

coefficients resulting from different ways of splitting the scale items. The

Cronbach’s Alpha coefficient has become by far the most popular measure of

internal consistency. In the example above, this would comprise calculating the

average of the correlations between (1) x1 and x2 + x3, (2) x2 and x1 + x3, as well as
(3) x3 and x1 + x2. The Cronbach’s Alpha coefficient generally varies from 0 to

1, whereas a generally agreed lower limit for the coefficient is 0.70. However, in

exploratory studies, a value of 0.60 is acceptable, while values of 0.80 or higher are

regarded as satisfactory in the more advanced stages of research (Hair et al. 2011).

In Box 8.3, we provide more advice on the use of Cronbach’s Alpha. We illustrate a

reliability analysis using the standard Stata module in the example at the end of this

chapter.

Box 8.3 Things to Consider When Calculating Cronbach’s Alpha

When calculating Cronbach’s Alpha, ensure that all items are formulated in

the same direction (positively or negatively worded). For example, in psy-

chological measurement, it is common to use both negatively and positively

worded items in a questionnaire. These need to be reversed prior to the

reliability analysis. In Stata, this is done automatically when an item is

negatively correlated with the other items. It is possible to add the option,
reverse (variable name) to force Stata to reverse an item or you can

stop Stata from reversing items automatically by using, asis. Furthermore,

we have to be aware of potential subscales in our item set. Some multi-item

scales comprise subsets of items that measure different facets of a multidi-

mensional construct. For example, soccer fan satisfaction is a multidimen-

sional construct that includes aspects such as satisfaction with the stadium,

the merchandise (as described above), the team, and the coach, each

measured with a different item set. It would be inappropriate to calculate

one Cronbach’s Alpha value for all 99 items. Cronbach’s Alpha is always

calculated over the items belonging to one construct and not all the items in

the dataset!

8.5 Structural Equation Modeling

Whereas a confirmatory factor analysis involves testing if and how items relate to

specific constructs, structural equation modeling involves the estimation of

relations between these constructs. It has become one of the most important

methods in social sciences, including marketing research.

There are broadly two approaches to structural equation modeling: Covariance-
based structural equation modeling (e.g., J€oreskog 1971) and partial least
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squares structural equation modeling (e.g., Wold 1982), simply referred to as

CB-SEM and PLS-SEM. Both estimation methods are based on the idea of an

underlying model that allows the researcher to test relationships between multiple

items and constructs.

Figure 8.8 shows an example path diagram with four constructs (represented by

circles or ovals) and their respective items (represented by boxes).7 A path model

incorporates two types of constructs: (1) exogenous constructs (here, satisfaction

with the stadium (Y1) and satisfaction with the merchandise (Y2)) that do not depend
on other constructs, and (2) endogenous constructs (here, overall satisfaction (Y3)
and loyalty (Y4)) that depend on one or more exogenous (or other endogenous)

constructs. The relations between the constructs (indicated with p) are called path

coefficients, while the relations between the constructs and their respective items

(indicated with l ) are the indicator loadings. One can distinguish between the

structural model that incorporates the relations between the constructs and the

(exogenous and endogenous) measurement models that represent the relationships

between the constructs and their related items. Items that measure constructs are

labeled x.
In the model in Fig. 8.8, we assume that the two exogenous constructs satisfac-

tion with the stadium and satisfaction with the merchandise relate to the endoge-

nous construct overall satisfaction and that overall satisfaction relates to loyalty.
Depending on the research question, we could of course incorporate additional

exogenous and endogenous constructs. Using empirical data, we could then test this

model and, thus, evaluate the relationships between all the constructs and between

each construct and its indicators. We could, for example, assess which of the two

Fig. 8.8 Path diagram (structural equation modeling)

7Note that we omitted the error terms for clarity’s sake.
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constructs, Y1 or Y2, exerts the greater influence on Y3. The result would guide us

when developing marketing plans in order to increase overall satisfaction and,

ultimately, loyalty by answering the research question whether we should rather

concentrate on increasing the fans’ satisfaction with the stadium or with the

merchandise.

The evaluation of a path model analysis requires several steps that include the

assessment of both measurement models and the structural model. Diamantopoulos

and Siguaw (2000) and Hair et al. (2013) provide a thorough description of the

covariance-based structural equation modeling approach and its application. Acock

(2013) provides a detailed explanation of how to conduct covariance-based struc-

tural equation modeling analyses in Stata. Hair et al. (2017a, b, 2018) provide a

step-by-step introduction on how to set up and test path models using partial least

squares structural equation modeling.

8.6 Example

In this example, we take a closer look at some of the items from the Oddjob

Airways dataset ( Web Appendix ! Downloads). This dataset contains eight

items that relate to the customers’ experience when flying with Oddjob Airways.

For each of the following items, the respondents had to rate their degree of

agreement from 1 (“completely disagree”) to 100 (“completely agree”). The vari-

able names are included below:

– with Oddjob Airways you will arrive on time (s1),
– the entire journey with Oddjob Airways will occur as booked (s2),
– in case something does not work out as planned, Oddjob Airways will find a

good solution (s3),
– the flight schedules of Oddjob Airways are reliable (s4),
– Oddjob Airways provides you with a very pleasant travel experience (s5),
– Oddjob Airways’s on board facilities are of high quality (s6),
– Oddjob Airways’s cabin seats are comfortable (s7), and
– Oddjob Airways offers a comfortable on-board experience (s8).

Our aim is to reduce the complexity of this item set by extracting several factors.

Hence, we use these items to run a PCA using the factor, pcf procedure in

Stata.

8.6.1 Principal Component Analysis

8.6.1.1 Check Requirements and Conduct Preliminary Analyses
All eight variables are interval scaled from 1 (“very unsatisfied”) to 100 (“very

satisfied”), therefore meeting the requirements in terms of the measurement scale.
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With 1,065 independent observations, the sample size requirements are clearly met,

even if the analysis yields very low communality values.

Determining if the variables are sufficiently correlated is easy if we go to ►
Statistics ► Summaries, tables, and tests ► Summary and descriptive statistics ►
Pairwise correlations. In the dialog box shown in Fig. 8.9, either enter each variable

separately (i.e., s1 s2 s3 etc.) or simply write s1-s8 as the variables appear in this

order in the dataset. Then also tick Print number of observations for each entry,
Print significance levels for each entry, as well as Use Bonferroni-adjusted

significance level. The latter option corrects for the many tests we execute at the

same time and is similar to what we discussed in Chap. 6.

Table 8.4 shows the resulting output. The values in the diagonal are all 1.000,

which is logical, as this is the correlation between a variable and itself! The

off-diagonal cells correspond to the pairwise correlations. For example, the pairwise

correlation between s1 and s2 is 0.7392. The value under it denotes the p-value
(0.000), indicating that the correlation is significant. To determine an absolute

minimum standard, check if at least one correlation in all the off-diagonal cells is

significant. The last value of 1037 indicates the sample size for the correlation

between s1 and s2.
The correlation matrix in Table 8.4 indicates that there are several pairs of highly

correlated variables. For example, not only s1 is highly correlated with s2 (correla-
tion ¼ 0.7392), but also s3 is highly correlated with s1 (correlation ¼ 0.6189), just

Fig. 8.9 Pairwise correlations of variables
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like s4 (correlation ¼ 0.7171). As these variables’ correlations with the remaining

ones are less pronounced, we suspect that these four variables constitute one factor.

As you can see by just looking at the correlation matrix, we can already identify the

factor structure that might result.

However, at this point of the analysis, we are more interested in checking

whether the variables are sufficiently correlated to conduct a PCA. When we

examine Table 8.4, we see that all correlations have p-values below 0.05. This

result indicates that the variables are sufficiently correlated. However, for a

concluding evaluation, we need to take the anti-image and related statistical

measures into account. Most importantly, we should also check if the KMO

values are at least 0.50. As we can only do this after the actual PCA, we will

discuss this point later.

Table 8.4 Pairwise correlation matrix

pwcorr s1-s8, obs sig bonferroni

|       s1       s2       s3       s4       s5       s6       s7
-------------+---------------------------------------------------------------

s1 |   1.0000 
|
|     1038
|

s2 |   0.7392   1.0000 
|   0.0000
|     1037     1040
|

s3 |   0.6189   0.6945   1.0000 
|   0.0000   0.0000
|      952      952      954
|

s4 |   0.7171   0.7655   0.6447   1.0000 
|   0.0000   0.0000   0.0000
|     1033     1034      951     1035
|

s5 |   0.5111   0.5394   0.5593   0.4901   1.0000 
|   0.0000   0.0000   0.0000   0.0000
|     1026     1027      945     1022     1041
|

s6 |   0.4898   0.4984   0.4972   0.4321   0.8212   1.0000 
|   0.0000   0.0000   0.0000   0.0000   0.0000
|     1025     1027   943     1022     1032     1041
|

s7 |   0.4530   0.4555   0.4598   0.3728   0.7873   0.8331   1.0000 
|   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000
|     1030     1032      947     1027     1038 1037     1048
|

s8 |   0.5326   0.5329   0.5544   0.4822   0.8072   0.8401   0.7773 
|   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000
|     1018     1019      937     1014     1029     1025     1032
|

|       s8
-------------+---------

s8 |   1.0000 
|
|     1034
|
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8.6.1.2 Extract the Factors and Determine the Number of Factors
To run the PCA, click on ► Statistics ► Multivariate analysis ► Factor and

principal component analysis ► Factor analysis, which will open a dialog box

similar to Fig. 8.10. Next, enter s1 s2 s3 s4 s5 s6 s7 s8 in the Variables box.

Alternatively, you can also simply enter s1-s8 in the box as the dataset includes

these eight variables in consecutive order.

Under the Model 2 tab (see Fig. 8.11), we can choose the method for factor

extraction, the maximum factors to be retained, as well as the minimum value for

the eigenvalues to be retained. As the aim of our analysis is to reproduce the data

structure, we choose Principal-component factor, which initiates the PCA based

on Stata’s factor, pcf procedure. By clicking on Minimum value of

eigenvalues to be retained and entering 1 in the box below, we specify the Kaiser

criterion. If we have a priori information on the factor structure, we can specify the

number of factors manually by clicking on Maximum number of factors to be

retained. Click on OK and Stata will display the results (Table 8.5).

Before we move to the further interpretation of the PCA results in Table 8.5, let’s

first take a look at the KMO.Although we need to know if the KMO is larger than 0.50

to interpret the PCA results with confidence, we can only do this after having run the

PCA. We can calculate the KMO values by going to ► Statistics ► Postestimation

► Principal component analysis reports and graphs ► Kaiser-Meyer-Olkin measure

of sample adequacy (Fig. 8.12). In the dialog box that opens, simply click on OK to

initiate the analysis.

The analysis result at the bottom of Table 8.6 reveals that the KMO value is

0.9073, which is “marvelous” (see Table 8.2). Likewise, the variable-specific MSA

Fig. 8.10 Factor analysis dialog box
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values in the table are all above the threshold value of 0.50. For example, s1 has an
MSA value of 0.9166.

The output in Table 8.5 shows three blocks. On the top right of the first block,

Stata shows the number of observations used in the analysis (Number of obs¼ 921)

and indicates that the analysis yielded two factors (Retained factors ¼ 2). In the

second block, Stata indicates the eigenvalues for each factor. With an eigenvalue of

5.24886, the first factor extracts a large amount of variance, which accounts for

5.24886/8 ¼ 65.61% of the total variance (see column: Proportion). With an

eigenvalue of 1.32834, factor two extracts less variance (16.60%). Using theKaiser

criterion (i.e., eigenvalue >1), we settle on two factors, because the third factor’s

eigenvalue is clearly lower than 1 (0.397267). The Cumulative column indicates

the cumulative variance extracted. The two factors extract 0.8222 or 82.22% of the

variance, which is highly satisfactory. The next block labeled Factor loadings

(pattern matrix) and unique variances shows the factor loadings along with the

Uniqueness, which indicates the amount of each variable’s variance that the factors

cannot reproduce (i.e., 1-communality) and is therefore lost in the process. All

uniqueness values are very low, indicating that the factors reproduce the variables’

variance well. Specifically, with a value of 0.3086, s3 exhibits the highest unique-

ness value, which suggests a communality of 1–0.3086 ¼ 0.6914 and is clearly

above the 0.50 threshold.

Beside the Kaiser criterion, the scree plot helps determine the number of factors.

To create a scree plot, go to ► Statistics ► Postestimation ► Principal component

analysis reports and graphs► Scree plot of eigenvalues. Then click on Launch and

Fig. 8.11 Factor analysis dialog box (options)
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OK. Stata will produce a graph as shown in Fig. 8.13. There is an “elbow” in the

line at three factors. As the number of factors that the scree plot suggests is one

factor less than the elbow indicates, we conclude that two factors are appropriate.

This finding supports the conclusion based on the Kaiser criterion.

Stata also allows for plotting each eigenvalue’s confidence interval. However,

to display such a scree plot requires running a PCA with a different command

in combination with a postestimation command. The following syntax

produces a scree plot for our example with a 95% confidence interval

(heteroskedastic), as well as a horizontal reference line at the 1 threshold.

pca s1 s2 s3 s4 s5 s6 s7 s8, mineigen(1)

screeplot, recast(line) ci(heteroskedastic) yline(1)

Table 8.5 PCA output

factor s1 s2 s3 s4 s5 s6 s7 s8, pcf mineigen(1)

(obs=921)

Factor analysis/correlation                      Number of obs    =        921
Method: principal-component factors          Retained factors =          2
Rotation: (unrotated)                        Number of params =         15

--------------------------------------------------------------------------
Factor  |   Eigenvalue   Difference        Proportion   Cumulative

-------------+------------------------------------------------------------
Factor1  |      5.24886      3.92053            0.6561       0.6561
Factor2  |      1.32834      0.93107            0.1660       0.8222
Factor3  |      0.39727      0.13406  0.0497       0.8718
Factor4  |      0.26321      0.03202            0.0329       0.9047
Factor5  |      0.23119      0.03484            0.0289       0.9336
Factor6  |      0.19634      0.00360            0.0245       0.9582
Factor7  |      0.19274      0.05067            0.0241       0.9822
Factor8  |      0.14206            .            0.0178       1.0000

--------------------------------------------------------------------------
LR test: independent vs. saturated:  chi2(28) = 6428.36 Prob>chi2 = 0.0000

Factor loadings (pattern matrix) and unique variances

-------------------------------------------------
Variable |  Factor1   Factor2 |   Uniqueness 

-------------+--------------------+--------------
s1 |   0.7855    0.3995 |      0.2235  
s2 |   0.8017    0.4420 |      0.1619  
s3 |   0.7672    0.3206 |      0.3086  
s4 |   0.7505    0.5090 |      0.1777  
s5 |   0.8587   -0.3307 |      0.1533  
s6 |   0.8444   -0.4203 |      0.1104  
s7 |   0.7993   -0.4662 |      0.1439  
s8 |   0.8649   -0.3291 |      0.1436  

-------------------------------------------------
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Fig. 8.12 Postestimation dialog box

Table 8.6 The KMO statistic

estat kmo

Kaiser-Meyer-Olkin measure of sampling adequacy

-----------------------
Variable |     kmo 

-------------+---------
s1 |  0.9166 
s2 |  0.8839 
s3 |  0.9427 
s4 |  0.8834 
s5 |  0.9308 
s6 |  0.8831 
s7 |  0.9036 
s8 |  0.9180 

-------------+---------
Overall |  0.9073 
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While the Kaiser criterion and the scree plot are helpful for determining the

number of factors to extract, parallel analysis is a more robust criterion. Parallel

analysis can only be accessed through the free add-on package paran. To install the

package, type in help paran in the command window and follow the instructions

to install the package. Having installed the package, type in paran s1 s2 s3 s4
s5 s6 s7 s8, centile(95) q all graph in the command window and Stata

will produce output similar to Table 8.7 and Fig. 8.14.

Table 8.7 contains two rows of eigenvalues, with the first column (Adjusted

Eigenvalue) indicating the sampling error-adjusted eigenvalues obtained by paral-

lel analysis. Note that your results will look slightly different, as parallel analysis

draws on randomly generated datasets. The second column (Unadjusted Eigen-

value) contains the eigenvalues as reported in the PCA output (Table 8.5). Analo-

gous to the original analysis, the two factors exhibit adjusted eigenvalues larger

than 1, indicating a two-factor solution. The scree plot in Fig. 8.14 also supports this

result, as the first two factors exhibit adjusted eigenvalues larger than the randomly

generated eigenvalues. Conversely, the random eigenvalue of the third factor is

clearly larger than the adjusted one.

Finally, we can also request the model selection statistics AIC and BIC for

different numbers of factors (see Fig. 8.15). To do so, go to ► Statistics ►
Postestimation ► AIC and BIC for different numbers of factors. As our analysis

draws on eight variables, we restrict the number of factors to consider to 4 (Specify

the maximum number of factors to include in summary table: 4). Table 8.8

shows the results of our analysis. As can be seen, AIC has the smallest value

(53.69378) for a four-factor solution, whereas BIC’s minimum value occurs for a

Fig. 8.13 Scree plot of eigenvalues
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two-factor solution (141.8393). However, as AIC is well known to overspecify the

number of factors, this result gives confidence that the two-factor solution as indicated

by the BIC is appropriate. Note that Table 8.8 says no Heywood cases encountered.

Table 8.7 Parallel analysis output

paran s1 s2 s3 s4 s5 s6 s7 s8, centile (95) q all graph

Computing: 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Results of Horn's Parallel Analysis for principal components
240 iterations, using the p95 estimate

--------------------------------------------------
Component   Adjusted    Unadjusted    Estimated
or Factor   Eigenvalue  Eigenvalue    Bias
--------------------------------------------------
1          5.1571075   5.2488644     .09175694
2          1.2542191   1.3283371     .07411802
3          .3409911    .39726683     .05627573
4          .23833934   .26320842     .02486908
5          .22882924   .23118517     .00235593
6          .23964682   .19634077     -.04330605
7          .2775334    .19273589     -.0847975
8          .26333341   .14206139     -.12127203
--------------------------------------------------
Criterion: retain adjusted components > 1

Fig. 8.14 Scree plot of parallel analysis
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Heywood cases indicate negative estimates of variances or correlation estimates

greater than one in absolute value. In the Stata output, they are typically noted as

Beware: solution is a Heywood case.

8.6.1.3 Interpret the Factor Solution
To facilitate the interpretation of the factor solution, we need to rotate the factors.

To initiate this analysis, go to ► Statistics ► Postestimation ► Factor analysis

reports and graphs ► Rotate factor loadings. In the dialog box that opens, select

Varimax (default) under Orthogonal rotation and click on Apply the Kaiser
normalization, followed by OK. Table 8.9 shows the resulting output.

Table 8.8 Factor rotation output

estat factors, factors(4)

Factor analysis with different numbers of factors (maximum likelihood)

----------------------------------------------------------
#factors |     loglik   df_m   df_r        AIC        BIC 
---------+------------------------------------------------

1 |  -771.1381      8     20   1558.276    1596.88 
2 |  -19.72869     15     13   69.45738   141.8393 
3 |  -10.09471     21      7   62.18943   163.5241 
4 |  -.8468887     26      2   53.69378   179.1557 

----------------------------------------------------------
no Heywood cases encountered

Fig. 8.15 AIC and BIC
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The upper part of Table 8.9 is the same as the standard PCA output (Table 8.5),

showing that the analysis draws on 921 observations and extracts two factors, which

jointly capture 82.22% of the variance. As its name implies, the Rotated factor

loadings block shows the factor loadings after rotation. Recall that rotation is

carried out to facilitate the interpretation of the factor solution. To interpret the

factors, we first “assign” each variable to a certain factor based on its maximum

absolute factor loading. That is, if the highest absolute loading is negative, higher

values of a particular variable relate negatively to the assigned factor. After that, we

should find an umbrella term for each factor that best describes the set of variables

associated with that factor. Looking at Table 8.9, we see that s1–s4 load highly on

the second factor, whereas s5-s8 load on the first factor. For example, s1 has a

0.2989 loading on the first factor, while its loading is much stronger on the second

factor (0.8290). Finally, note that the uniqueness and, hence, the communality

values are unaffected by the rotation (see Table 8.5).

Table 8.9 Factor rotation output

rotate, kaiser

Factor analysis/correlation                      Number of obs    =        921
Method: principal-component factors          Retained factors =          2
Rotation: orthogonal varimax (Kaiser on)     Number of params =         15

--------------------------------------------------------------------------
Factor  |     Variance   Difference        Proportion   Cumulative

-------------+------------------------------------------------------------
Factor1  |      3.41063      0.24405            0.4263       0.4263
Factor2  |      3.16657            .            0.3958       0.8222

--------------------------------------------------------------------------
LR test: independent vs. saturated:  chi2(28) = 6428.36 Prob>chi2 = 0.0000

Rotated factor loadings (pattern matrix) and unique variances

-------------------------------------------------
Variable |  Factor1   Factor2 |   Uniqueness 

-------------+--------------------+--------------
s1 |   0.2989    0.8290 |      0.2235  
s2 |   0.2817    0.8711 |      0.1619  
s3 |   0.3396    0.7590 |      0.3086  
s4 |   0.1984    0.8848 |      0.1777  
s5 |   0.8522    0.3470 |      0.1533  
s6 |   0.9031    0.2719 |      0.1104  
s7 |   0.9017    0.2076 |      0.1439  
s8 |   0.8557    0.3524 | 0.1436  

-------------------------------------------------

Factor rotation matrix

--------------------------------
| Factor1  Factor2 

-------------+------------------
Factor1 |  0.7288   0.6847 
Factor2 | -0.6847   0.7288 

--------------------------------
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To facilitate the identification of labels, we can plot each item’s loading against

each factor. To request a factor loadings plot, go to► Statistics► Postestimation►
Factor analysis reports and graphs ► Plot of factor loadings and click on Launch.

In the dialog box that follows, retain the default settings and click on OK. The

resulting plot (Fig. 8.16) shows two cluster of variables, which strongly load on one

factor while having low loadings on the other factor. This result supports our

previous conclusion in terms of the variable assignments.

Having identified which variables load highly on which factor in the rotated

solution, we now need to identify labels for each factor. Looking at the variable

labels, we learn that the first set of variables (s1–s4) relate to reliability aspects of

the journey and related processes, such as the booking. We could therefore label

this factor (i.e., factor 2) reliability. The second set of variables (s5–s8) relate to

different aspects of the onboard facilities and the travel experience. Hence, we

could label this factor (i.e., factor 1) onboard experience. The labeling of factors is

of course subjective and you could provide different descriptions.

8.6.1.4 Evaluate the Goodness-of-fit of the Factor Solution
The last step involves assessing the analysis’s goodness-of-fit. To do so, we first

look at the residuals (i.e., the differences between observed and reproduced

correlations) in the reproduced correlation matrix. To create this matrix, go to ►
Statistics ► Postestimation ► Factor analysis reports and graphs ► Matrix of

correlation residuals. In the dialog box that opens, select Matrix of correlation

of covariance residuals (residuals) and click on OK. Table 8.10 shows the

resulting output.

Fig. 8.16 Factor loadings plot
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When examining the lower part of Table 8.10, we see that there are several

residuals with absolute values larger than 0.05. A quick count reveals that 8 out of

29 (i.e., 27.59%) residuals are larger than 0.05. As the percentage of increased

residuals is well below 50%, we can presume a good model fit.

Similarly, our previous analysis showed that the two factors reproduce a suffi-

cient amount of each variable’s variance. The uniqueness values are clearly below

0.50 (i.e., the communalities are larger than 0.50), indicating that the factors

account for more than 50% of the variables’ variance (Table 8.5).

8.6.1.5 Compute the Factor Scores
The evaluation of the factor solution’s goodness-of-fit completes the standard PCA

analysis. However, if we wish to continue using the results for further analyses, we

should calculate the factor scores. Go to ► Statistics ► Postestimation ►
Predictions ► Regression and Bartlett scores and Stata will open a dialog box

similar to Fig. 8.17. Under New variable names or variable stub* you can enter a

prefix name, which Stata uses to name the saved factor scores. For example,

specifying factor*, as shown in Fig. 8.17, will create two variables called factor1
and factor2. Next, select Factors scored by the regression scoring method and

click on OK. Stata will produce an output table showing the scoring coefficients,

which are the weights used to compute the factor scores from the standardized data.

However, we are more interested in the actual factor scores, which we can access by

clicking on the Data Browser button in Stata’s menu bar. Figure 8.18 shows the

scores of factor1 and factor2 for the first ten observations.

Being z-standardized, the newly generated variables factor1 and factor2 have

mean values (approximately) equal to zero and standard deviations equal to 1. Thus,

the factor scores are estimated in units of standard deviations from their means. For

example, the first observation is about 1.91 standard deviations below average on

the onboard experience factor (i.e., factor 1) and about 0.91 standard deviations

above average on the reliability factor (i.e., factor 2). In contrast, the second

observation is clearly above average in terms of reliability and onboard experience.
Note that if the original variables include a missing value, the factor score will also

be missing (i.e., only a “.” (dot) will be recorded).

Table 8.10 Correlation residual matrix

estat residuals

Raw residuals of correlations (observed-fitted)

--------------------------------------------------------------------------------------
Variable |      s1       s2       s3       s4       s5       s6       s7       s8 

-------------+------------------------------------------------------------------------
s1 |  0.0000                                                
s2 | -0.0525   0.0000                                                       
s3 | -0.1089  -0.0602   0.0000                                              
s4 | -0.0598  -0.0557  -0.0907   0.0000    
s5 | -0.0174  -0.0063  -0.0029   0.0076   0.0000                            
s6 |  0.0046   0.0023  -0.0216   0.0159  -0.0464   0.0000                   
s7 |  0.0136   0.0182  -0.0118   0.0042  -0.0529  -0.0393   0.0000          
s8 | -0.0056  -0.0135  -0.0056   0.0052  -0.0404  -0.0265  -0.0645   0.0000 

--------------------------------------------------------------------------------------
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8.6.2 Reliability Analysis

To illustrate its usage, let’s carry out a reliability analysis of the first factor onboard
experience by calculating Cronbach’s Alpha as a function of variables s5 to s8. To
run the reliability analysis, click on ► Statistics ► Multivariate analysis ►
Cronbach’s Alpha. A window similar to Fig. 8.19 will appear. Next, enter variables

s5–s8 into the Variables box.

Fig. 8.17 Saving factor scores as new variables

Fig. 8.18 Overview of factor

scores for the first ten

observations
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TheOptions tab (Fig. 8.20) provides options for dealing with missing values and

requesting descriptive statistics for each item and the entire scale or item

correlations. Check Display item-test and item-rest correlations and click on

OK.

The results in Table 8.11 show that the scale exhibits a high degree of internal

consistency reliability. With a value of 0.9439 (see row Test scale), the Cronbach’s

Alpha coefficient lies well above the commonly suggested threshold of 0.70. This

result is not surprising, since we are simply testing a scale previously established by

means of item correlations. Keep in mind that we usually carry out a reliability

analysis to test a scale using a different sample—this example is only for illustration

purposes! The rightmost column of Table 8.11 indicates what the Cronbach’s Alpha

would be if we deleted the item indicated in that row. When we compare each of the

values with the overall Cronbach’s Alpha value, we can see that any change in the

scale’s set-up would reduce the Cronbach’s Alpha value. For example, by removing

s5 from the scale, the Cronbach’s Alpha of the new scale comprising only s6, s7,
and s8 would be reduced to 0.9284. Therefore, deleting this item (or any others)

makes little sense. In the leftmost column of Table 8.11, Stata indicates the number

of observations (Obs), as well as whether that particular item correlates positively

or negatively with the sum of the other items (Sign). This information is useful for

determining whether reverse-coded items were also identified as such. Reverse-

coded items should have a minus sign. The columns item-test, item-rest, and

average interitem covariance are not needed for a basic interpretation.

Fig. 8.19 Reliability analysis dialog box

8.6 Example 305



8.7 Customer Satisfaction at Haver and Boecker (Case Study)

Haver and Boecker (http://www.haverboecker.com) is one of the world’s leading

and most renowned machine producers in the fields of mineral processing, as well

as the storing, conveying, packing, and loading of bulk material. The family-owned

group operates through its global network of facilities, with manufacturing units,

among others, in Germany, the UK, Belgium, US, Canada, Brazil, China, and India.

Fig. 8.20 Options tab for Cronbach’s alpha

Table 8.11 Reliability statistics

alpha s5 s6 s7 s8, item

Test scale = mean(unstandardized items)

average
item-test     item-rest       interitem

Item         |  Obs  Sign   correlation   correlation     covariance      alpha
-------------+-----------------------------------------------------------------
s5           | 1041    +   0.9211        0.8578        421.5723      0.9284
s6           | 1041    +       0.9422        0.8964        412.3225      0.9168
s7           | 1048    +       0.9222        0.8506        399.2565      0.9330
s8           | 1034    +       0.9203      0.8620        434.3355      0.9282
-------------+-----------------------------------------------------------------
Test scale   |                                             416.8996      0.9439
-------------------------------------------------------------------------------
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The company’s relationships with its customers are usually long-term oriented

and complex. Since the company’s philosophy is to help customers and business

partners solve their challenges or problems, they often customize their products and

services to meet the buyers’ needs. Therefore, the customer is no longer a passive

buyer, but an active partner. Given this background, the customers’ satisfaction

plays an important role in establishing, developing, and maintaining successful

customer relationships.

Very early on, the company’s management realized the importance of customer

satisfaction and decided to commission a market research project in order to

identify marketing activities that can positively contribute to the business’s overall

success. Based on a thorough literature review, as well as interviews with experts,

the company developed a short survey to explore their customers’ satisfaction with

specific performance features and their overall satisfaction. All the items were

measured on 7-point scales, with higher scores denoting higher levels of satisfac-

tion. A standardized survey was mailed to customers in 12 countries worldwide,

which yielded 281 fully completed questionnaires. The following items (names in

parentheses) were listed in the survey:

– Reliability of the machines and systems. (s1)
– Life-time of the machines and systems. (s2)
– Functionality and user-friendliness operation of the machines and systems. (s3)
– Appearance of the machines and systems. (s4)
– Accuracy of the machines and systems. (s5)
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– Timely availability of the after-sales service. (s6)
– Local availability of the after-sales service. (s7)
– Fast processing of complaints. (s8)
– Composition of quotations. (s9)
– Transparency of quotations. (s10)
– Fixed product prize for the machines and systems. (s11)
– Cost/performance ratio of the machines and systems. (s12)
– Overall, how satisfied are you with the supplier (overall)?

Your task is to analyze the dataset to provide the management of Haver and

Boecker with advice for effective customer satisfaction management. The dataset is

labeled haver_and_boecker.dta ( Web Appendix ! Downloads).

1. Determine the factors that characterize the respondents by means a factor

analysis. Use items s1–s12 for this. Run a PCA with varimax rotation to facilitate

interpretation. Consider the following aspects:

(a) Are all assumptions for carrying out a PCAmet? Pay special attention to the

question whether the data are sufficiently correlated.

(b) How many factors would you extract? Base your decision on the Kaiser

criterion, the scree plot, parallel analysis, and the model selection statistics

AIC and BIC.

(c) Find suitable labels for the extracted factors.

(d) Evaluate the factor solution’s goodness-of-fit.

2. Use the factor scores and regress the customers’ overall satisfaction (overall) on
these. Evaluate the strength of the model and compare it with the initial regres-

sion. What should Haver and Boecker’s management do to increase their

customers’ satisfaction?

3. Calculate the Cronbach’s Alpha over items s1–s5 and interpret the results.

For further information on the dataset and the study, see Festge and Schwaiger

(2007), as well as Sarstedt et al. (2009).

8.8 Review Questions

1. What is factor analysis? Try to explain what factor analysis is in your own

words.

2. What is the difference between exploratory factor analysis and confirmatory

factor analysis?

3. What is the difference between PCA and factor analysis?

4. Describe the terms communality, eigenvalue, factor loading, and uniqueness.

How do these concepts relate to one another?

5. Describe three approaches used to determine the number of factors.

6. What are the purpose and the characteristic of a varimax rotation? Does a

rotation alter eigenvalues or factor loadings?
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7. Re-run the Oddjob Airways case study by carrying out a factor analysis and

compare the results with the example carried out using PCA. Are there any

significant differences?

8. What is reliability analysis and why is it important?

9. Explain the basic principle of structural equation modeling.

8.9 Further Readings

Nunnally, J. C., & Bernstein, I. H. (1993). Psychometric theory (3rd ed.). New York:

McGraw-Hill.

Psychometric theory is a classic text and the most comprehensive introduction to
the fundamental principles of measurement. Chapter 7 provides an in-depth
discussion of the nature of reliability and its assessment.

Sarstedt, M., Hair, J. F., Ringle, C. M., Thiele, K. O., & Gudergan, S. P. (2016).

Estimation issues with PLS and CBSEM: where the bias lies! Journal of
Business Research, 69(10), 3998–4010.

This paper discusses the differences between covariance-based and partial least
squares structural equation modeling from a measurement perspective. This
discussion relates to the differentiation between factor analysis and PCA and
the assumptions underlying each approach to measure unobservable
phenomena.

Stewart, D. W., (1981). The application and misapplication of factor analysis in

marketing research. Journal of Marketing Research, 18(1), 51–62.
David Stewart discusses procedures for determining when data are appropriate for

factor analysis, as well as guidelines for determining the number of factors to
extract, and for rotation.
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