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9.1 Introduction

Market segmentation is one of the most fundamental marketing activities. To successfully 
match products and services to customer needs, companies have to divide markets into 
groups (segments) of consumers, customers, and clients with similar needs and wants. Firms 
can then target each of these segments by positioning themselves in a unique segment (e.g., 
Ferrari in the high-end sports car market). Market segmentation “is essential for marketing 
success: the most successful firms segment their markets carefully” (Lilien and Rangaswamy 
2004, p. 61) and “tools such as segmentation [ … ] have the largest impact on marketing 
decisions” (Roberts et al. 2014, p. 127). While market researchers often form market seg-
ments based on practical grounds, industry practice and wisdom, cluster analysis uses data 
to form segments, making segmentation less dependent on subjectivity.

9.2 Understanding Cluster Analysis

Cluster analysis is a method for segmentation and identifies homogenous groups of objects 
(or cases, observations) called clusters. These objects can be individual customers, groups 
of customers, companies, or entire countries. Objects in a certain cluster should be as 
similar as possible to each other, but as distinct as possible from objects in other clusters.

Let’s try to gain a basic understanding of cluster analysis by looking at a simple example. 
Imagine that you are interested in segmenting customers A to G in order to better target 
them through, for example, pricing strategies.

The first step is to decide on the characteristics that you will use to segment your 
customers A to G. In other words, you have to decide which clustering variables will 

Learning Objectives
After reading this chapter you should understand:
 5 The basic concepts of cluster analysis.
 5 How basic cluster algorithms work.
 5 How to compute simple clustering results manually.
 5 The different types of clustering procedures.
 5 The SPSS clustering outputs.
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be included in the analysis. For example, you may want to segment a market based on  
customers’ price consciousness (x) and brand loyalty (y). These two variables can be  
measured on a scale from 0 to 100 with higher values denoting a higher degree of price  
consciousness and brand loyalty. . Table 9.1 and the scatter plot in . Fig. 9.1 show the 
values of seven customers (referred to as objects).

The aim of cluster analysis is to identify groups of objects (here, customers) that are 
very similar regarding their price consciousness and brand loyalty, and assign them to clus-
ters. After having decided on the clustering variables (here, price consciousness and brand 
loyalty), we need to decide on the clustering procedure to form our groups of objects. This 
step is crucial for the analysis, as different procedures require different decisions prior to 
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. Fig. 9.1 Scatter plot

. Table 9.1 Data

Customer A B C D E F G

x 33 82 66 30 79 50 10

y 95 94 80 67 60 33 17
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analysis. There are many different approaches and little guidance on which one to use. We 
will discuss the most popular approaches in market research, including:
 4 hierarchical methods,
 4 partitioning methods (especially k-means), and
 4 two-step clustering.

While the basic aim of these procedures is the same, namely grouping similar objects 
into clusters, they take different routes, which we will discuss in this chapter. An import-
ant consideration before starting the grouping is to determine how similarity should be 
measured. Most methods calculate measures of (dis)similarity by estimating the distance 
between pairs of objects. Objects with smaller distances between one another are consid-
ered more similar, whereas objects with larger distances are considered more dissimilar. 
The decision on how many clusters should be derived from the data is a fundamental issue 
in the application of cluster analysis. This question is explored in the next step of the anal-
ysis. In most instances, we do not know the exact number of clusters and then we face a 
trade-off. On the one hand, we want as few clusters as possible to make the clusters easy to 
understand and actionable. On the other hand, having many clusters allows us to identify 
subtle differences between objects.

Megabus is a hugely successful bus line in the US. They completely rethought the nature of their 
customers and concentrated on three specific segments of the market: College kids, women 
travelling in groups, and active seniors. To meet these customer segments’ needs, Megabus 
reimagined the entire driving experience by developing double-decker buses with glass roofs 
and big windows, and equipped with fast WiFi. Megabus’s success of segmenting and targeting 
efforts has led to practitioners talk about the “Megabus Effect”—how one company has shaped 
an entire industry.

© Stagecoach Group plc.
https://www.youtube.com/watch?v=mnrblwymSEo

In the final step, we need to interpret the clustering solution by defining and labeling 
the obtained clusters. We can do this by comparing the mean values of the clustering vari-
ables across the different clusters, or by identifying explanatory variables to profile the 
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clusters. Ultimately, managers should be able to identify customers in each cluster on the 
basis of easily measurable variables. This final step also requires us to assess the clustering 
solution’s stability and validity. . Figure 9.2 illustrates the steps associated with a cluster 
analysis; we will discuss these steps in more detail in the following sections.

9.3 Conducting a Cluster Analysis

9.3.1 Select the Clustering Variables

At the beginning of the clustering process, we have to select appropriate variables for clus-
tering. Even though this choice is critical, it is rarely treated as such. Instead, a mixture of 
intuition and data availability guide most analyses in marketing practice. However, faulty 
assumptions may lead to improper market segmentation and, consequently, to deficient 
marketing strategies. Thus, great care should be taken when selecting the clustering vari-
ables! There are several types of clustering variables, as shown in . Fig. 9.3. Sociodemo-
graphic variables define clusters based on people’s demographic (e.g., age, ethnicity, and 
gender), geographic (e.g., residence in terms of country, state, and city), and socioeconomic 
(e.g., education, income, and social class) characteristics. Psychometric variables capture 
unobservable character traits such as people’s personalities or lifestyles. Finally, behav-
ioral clustering variables typically consider different facets of consumer behavior, such as 
the way people purchase, use, and dispose of products. Other behavioral clustering vari-
ables capture specific benefits which different groups of consumers look for in a product.

The types of variables used for cluster analysis provide different solutions and, thereby, 
influence targeting strategies. Over the last decades, attention has shifted from more tradi-
tional sociodemographic clustering variables towards behavioral and psychometric vari-
ables. The latter generally provide better guidance for decisions on marketing instruments’ 

Select the clustering variables 

Select the clustering procedure 

Select a measure of similarity or dissimilarity 

Decide on the number of clusters 

Validate and interpret the clustering solution 

. Fig. 9.2 Steps involved in a cluster analysis
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effective specification. Generally, clusters based on psychometric variables are more 
homogenous and these consumers respond more consistently to marketing actions (e.g., 
Wedel and Kamakura 2000). However, consumers in these clusters are frequently hard 
to identify as such variables are not easily measured. Conversely, clusters determined by 
sociodemographic variables are easy to identify but are also more heterogeneous, which 
complicates targeting efforts. Consequently, researchers frequently combine different vari-
ables such as lifestyle characteristics and demographic variables, benefiting from each 
one’s strengths.

In some cases, the choice of clustering variables is apparent because of the task at hand. 
For example, a managerial problem regarding corporate communications will have a fairly 
well defined set of clustering variables, including contenders such as awareness, attitudes, 
perceptions, and media habits. However, this is not always the case and researchers have 
to choose from a set of candidate variables. But how do we make this decision? To facili-
tate the choice of clustering variables, we should consider the following guiding questions:
 4 Do the variables differentiate sufficiently between the clusters?
 4 Is the relation between the sample size and the number of clustering variables 

reasonable?
 4 Are the clustering variables highly correlated?
 4 Are the data underlying the clustering variables of high quality?

Sociodemographic Psychometric Behavioral  

Demographic 

Geographic 

Personality 

Lifestyle 
Choice of retail 

outlets 

Socioeconomic 

Perceptions and 
intentions 

Product and 
service use 

Purchase 
behavior 

Benefits 

. Fig. 9.3 Types of clustering variables
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z Do the variables differentiate sufficiently between the clusters?
It is important to select those clustering variables that provide a clear-cut differentiation 
between the objects.1 More precisely, criterion validity is of special interest; that is, the 
extent to which the “independent” clustering variables are associated with one or more 
criterion variables not included in the analysis. Such criterion variables generally relate 
to an aspect of behavior, such as purchase intention or willingness-to-pay. Given this 
relationship, there should be significant differences between the criterion variable(s) 
across the clusters (e.g., consumers in one cluster exhibit a significantly higher willing-
ness-to-pay than those in other clusters). These associations may or may not be causal, 
but it is essential that the clustering variables distinguish significantly between the vari-
able(s) of interest.

z Is the relation between the sample size and the number of clustering variables 
reasonable?

When choosing clustering variables, the sample size is important. From a statistical per-
spective, every additional variable requires an over-proportional increase in observations 
to ensure valid results. Unfortunately, there is no generally accepted guideline regarding 
minimum sample sizes or the relationship between the objects and the number of clus-
tering variables used. Recent rules-of-thumb are as follows:
 4 In the simplest case where clusters are of equal size, Qiu and Joe (2009) recommend 

a sample size at least ten times the number of clustering variables multiplied by the 
number of clusters.
 4 Dolnicar et al. (2014) recommend using a sample size of 70 times the number of 

clustering variables.
 4 Dolnicar et al. (2016) find that increasing the sample size from 10 to 30 times the 

number of clustering variables substantially improves the clustering solution. This 
improvement levels off subsequently, but is still noticeable up to a sample size of 
approximately 100 times the number of clustering variables. 

These rules-of-thumb are approximate as the required sample size depends on many 
factors, such as survey data characteristics (e.g., nonresponse, sampling error, response 
styles), relative cluster sizes, and the degree to which the clusters overlap (Dolnicar et al. 
2016). Qiu and Joe (2009) suggest a minimum sample size of 10 times the number of 
clustering variables. Keep in mind that no matter how many variables are used and no 
matter how small the sample size, cluster analysis will almost always provide a result. At 
the same time, increasing the sample size has decreasing marginal returns on the quality 
of results. In addition, we need to be able to find clusters that are managerially relevant 
as the cluster sizes need to be substantial to ensure that the targeted marketing programs 
are profitable.

z Are the clustering variables highly correlated?
If there is strong correlation between the variables, they are not sufficiently unique to identify 
distinct market segments. If highly correlated variables—0.90 and over—are used for cluster 

1 Tonks (2009) provides a discussion of segment design and the choice of clustering variables in  
consumer markets.
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2 See Arabie and Hubert (1994), Sheppard (1996), and Dolnicar and Grün (2009).

Box 9.1 Issues with factor-cluster segmentation
Dolnicar and Grün (Dolnicar and Grün 2009) identify several problems of the factor-cluster 
segmentation approach (see 7 Chap. 8 for a discussion of principal component and factor 
analysis and related terminology):
1. The data are pre-processed and the clusters are identified on the basis of transformed values, 

not on the original information, which leads to different results.
2. In factor analysis, the factor solution does not explain all the variance; information is thus 

discarded before the clusters have been identified or constructed.
3. Eliminating variables with low loadings on all the extracted factors means that, potentially, 

the most important pieces of information for the identification of niche clusters are 
discarded, making it impossible to ever identify such groups.

4. The interpretations of clusters based on the original variables become questionable, given 
that these clusters were constructed by using factor scores.

Several studies have shown that the factor-cluster segmentation reduces the success of finding 
useable clusters significantly.2 Consequently, you should reduce the number of items in the 
questionnaire’s pre-testing phase, retaining a reasonable number of relevant, non-overlapping 
questions that you believe differentiate the clusters well. However, if you have doubts about the 
data structure, factor-clustering segmentation may still be a better option than discarding items.

analysis, the specific aspects that these variables cover will be overrepresented in the clustering 
solution. For example, if we were to add another variable called brand preference to our anal-
ysis, it would almost cover the same aspect as brand loyalty. The concept of being attached to 
a brand would therefore be overrepresented in the analysis, because the clustering procedure 
does not conceptually differentiate between the clustering variables. Researchers frequently 
handle such correlation problems by applying cluster analysis to the observations’ factor 
scores, derived from a principal component or factor analysis. However, this factor-cluster 
segmentation approach is subject to several limitations, which we discuss in Box 9.1.

z Are the data underlying the clustering variables of high quality?
Ultimately, the choice of clustering variables always depends on contextual influences, 
such as the data availability or the resources to acquire additional data. Market researchers 
often overlook that the choice of clustering variables is closely connected to data quality. 
Only those variables that ensure that high quality data can be used should be included in 
the analysis (Dolnicar and Lazarevski 2009). Following our discussions in 7 Chaps. 3–5, 
data are of high quality if the questions …

 4 … have a strong theoretical basis,
 4 … are not contaminated by respondent fatigue or response styles, and
 4 … reflect the current market situation (i.e., they are recent).

The requirements of other functions in the organization often play a major role in the 
choice of clustering variables. Consequently, we have to be aware that the choice of clus-
tering variables should lead to segments acceptable to the different functions in the 
organization.

9
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9.3.2 Select the Clustering Procedure

By choosing a specific clustering procedure, we determine how clusters should be 
formed. This forming of clusters always involves optimizing some kind of criterion, 
such as minimizing the within-cluster variance (i.e., the clustering variables’ overall 
variance of the objects in a specific cluster), or maximizing the distance between the 
clusters. The procedure could also address the question of how to determine the (dis)
similarity between objects in a newly formed cluster and the remaining objects in the 
dataset.

There are many different clustering procedures and also many ways of classifying these 
(e.g., overlapping versus non-overlapping, unimodal versus multimodal, exhaustive versus 
non-exhaustive). Wedel and Kamakura (2000), Dolnicar (2003), and Kaufman and Rous-
seeuw (2005) offer reviews of clustering techniques. A practical distinction is the differ-
entiation between hierarchical and partitioning methods (especially k-means), which we 
will discuss in the next sections.

9.3.2.1 Hierarchical Clustering Methods
z Understanding Hierarchical Clustering Methods
Hierarchical clustering methods are characterized by the tree-like structure established in 
the course of the analysis. Most hierarchical methods fall into a category called agglomer-
ative clustering. In this category, clusters are consecutively formed from objects. Agglom-
erative clustering starts with each object representing an individual cluster. The objects are 
then sequentially merged to form clusters of multiple objects, starting with the two most 
similar objects. Similarity is typically defined in terms of the distance between objects. 
That is, objects with smaller distances between one another are considered more similar, 
whereas objects with larger distances are considered more dissimilar. After the merger 
of the first two most similar (i.e., closest) objects, the agglomerative clustering proce-
dure continues by merging another pair of objects or adding another object to an already 
existing cluster. This procedure continues until all the objects have been merged into 
one big cluster. As such, agglomerative clustering establishes a hierarchy of objects from 
the bottom (where each object represents a distinct cluster) to the top (where all objects 
form one big cluster). The left-hand side of . Fig. 9.4 shows how agglomerative clustering 
merges objects (represented by circles) step-by-step with other objects or clusters (rep-
resented by ovals).

Hierarchical clustering can also be interpreted as a top-down process, where all 
objects are initially merged into a single cluster, which the algorithm then gradually 
splits up into smaller clusters. This approach to hierarchical clustering is called divisive 
clustering. The right-hand side of . Fig. 9.4 illustrates the divisive clustering concept. As 
we can see, in both agglomerative and divisive clustering, a cluster on a higher level of 
the hierarchy always encompasses all clusters from a lower level. This means that if an 
object is assigned to a certain cluster, there is no possibility of reassigning this object 
to another cluster (hence, the name hierarchical clustering). This is an important dis-
tinction between hierarchical and partitioning methods, such as k-means, which we 
will explore later in this chapter.
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Divisive procedures are rarely used in market research and not implemented in statis-
tical software programs such as SPSS as they are computationally very intensive for all but 
small datasets.3 We therefore focus on (agglomerative) hierarchical clustering.

z Linkage algorithms
When using agglomerative hierarchical clustering, you need to specify a linkage algorithm. 
Linkage algorithms define the distance from a newly formed cluster to a certain object, or to 
other clusters in the solution. The most popular linkage algorithms include the following:

 4 Single linkage (nearest neighbor in SPSS): The distance between two clusters 
corresponds to the shortest distance between any two members in the two clusters.
 4 Complete linkage (furthest neighbor in SPSS): The oppositional approach to single 

linkage assumes that the distance between two clusters is based on the longest 
distance between any two members in the two clusters.
 4 Average linkage (between-groups linkage in SPSS): The distance between two clusters 

is defined as the average distance between all pairs of the two clusters’ members.
 4 Centroid linkage: In this approach, the geometric center (centroid) of each cluster is 

computed first. This is done by computing the clustering variables’ average values of 
all the objects in a certain cluster. The distance between the two clusters equals the 
distance between the two centroids.

3 Whereas agglomerative methods have the large task of checking N·(N–1)/2 possible first combina-
tions of observations (note that N represents the number of observations in the dataset), divisive 
methods have the almost impossible task of checking 2(N-1)–1 combinations.
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 4 Ward’s linkage: This approach differs from the previous ones in that it does not 
combine the two closest or most similar objects successively. Instead, Ward’s linkage 
combines those objects whose merger increases the overall within-cluster variance 
(i.e., the homogeneity of clusters) to the smallest possible degree. The approach is 
generally used in combination with (squared) Euclidean distances, but can be used 
in combination with any other (dis)similarity measure.

. Figs. 9.5, 9.6, 9.7, 9.8 and 9.9 illustrate these linkage algorithms for two clusters, which 
are represented by white circles surrounding a set of objects.

Each of these linkage algorithms can yield different results when used on the same 
dataset, as each has specific properties:

 4 The single linkage algorithm is based on minimum distances; it tends to form one 
large cluster with the other clusters containing only one or a few objects each. We 
can make use of this chaining effect to detect outliers, as these will be merged with 
the remaining objects—usually at very large distances—in the last steps of the 
analysis. Single linkage is considered the most versatile algorithm.
 4 The complete linkage method is strongly affected by outliers, as it is based on 

maximum distances. Clusters produced by this method are likely to be compact and 
tightly clustered.
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. Fig. 9.5 Single linkage
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 4 The average linkage and centroid linkage algorithms tend to produce clusters with 
low within-cluster variance and with similar sizes. The average linkage is affected by 
outliers, but less than the complete linkage method.
 4 Ward’s linkage yields clusters of similar size with a similar degree of tightness. 

Prior research has shown that the approach generally performs very well. However, 
outliers and highly correlated variables have a strong impact on the results.

To better understand how the linkage algorithms work, let’s manually examine some calcu-
lation steps using single linkage as an example. Let's start by looking at the distance matrix 
in . Table 9.2, which shows the distances between objects A-G from our initial example. 
In this distance matrix, the non-diagonal elements express the distances between pairs 
of objects based on the Euclidean distance—we will discuss this distance measure in the 
following section. The diagonal elements of the matrix represent the distance from each 
object to itself, which is, of course, 0. In our example, the distance matrix is an 8 × 8 table 
with the lines and rows representing the objects under consideration (see . Table 9.1). 
As the distance between objects B and C (in this case, 21.260 units; printed in bold in 
. Table 9.2) is the same as between C and B, the distance matrix is symmetrical. 
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. Fig. 9.6 Complete linkage
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. Fig. 9.7 Average linkage

Furthermore, since the distance between an object and itself is 0, you only need to look at 
either the lower or upper non-diagonal elements.

In the very first step, the two objects exhibiting the smallest distance in the matrix are 
merged. Since the smallest distance occurs between B and C (d(B,C) = 21.260), we merge 
these two objects in the first step of the analysis.

>  Agglomerative clustering procedures always merge those objects with the smallest 
distance, regardless of the linkage algorithm used (e.g., single or complete linkage).

In the next step, we form a new distance matrix by considering the single linkage deci-
sion rule as discussed above. Using this linkage algorithm, we need to compute the dis-
tance from the newly formed cluster [B,C] (clusters are indicated by squared brackets) 
to all the other objects. For example, with regard to the distance from the cluster [B,C] to 
object A, we need to check whether A is closer to object B or to object C. That is, we look 
for the minimum value in d(A,B) and d(A,C) from . Table 9.2. As d(A,C) = 36.249 is 
smaller than d(A,B) = 49.010, the distance from A to the newly formed cluster is equal to 
d(A,C); that is, 36.249. We also compute the distances from cluster [B,C] to all the other 
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objects (i.e., D, E, F, G). For example, the distance between [B,C] and D is the minimum 
of d(B,D) = 58.592 and d(C,D) = 38.275 (. Table 9.2). Finally, there are several distances, 
such as d(D,E) and d(E,F), which are not affected by the merger of B and C. These dis-
tances are simply copied into the new distance matrix. This yields the new distance matrix 
shown in . Table 9.3.

Continuing the clustering procedure, we simply repeat the last step by merging the 
objects in the new distance matrix that exhibit the smallest distance and calculate the 
distance from this new cluster to all the other objects. In our case, the smallest distance 
(23.854, printed in bold in . Table 9.3) occurs between the newly formed cluster [B, C] 
and object E. The result of this step is described in . Table 9.4.

Try to calculate the remaining steps yourself and compare your solution with the dis-
tance matrices in the following . Tables 9.5, 9.6 and 9.7.

By following the single linkage procedure, the last steps involve the merger of cluster 
[A,B,C,D,E,F] and object G at a distance of 43.081. Do you get the same results? As you 
can see, conducting a basic cluster analysis manually is not that hard at all—not if there 
are only a few objects.
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. Fig. 9.9 Ward’s linkage

. Table 9.2 Euclidean distance matrix

Objects A B C D E F G

A 0

B 49.010 0

C 36.249 21.260 0

D 28.160 58.592 38.275 0

E 57.801 34.132 23.854 40.497 0

F 64.288 68.884 49.649 39.446 39.623 0

G 81.320 105.418 84.291 53.852 81.302 43.081 0

Note: Smallest distance is printed in bold.



. Table 9.3 Distance matrix after first clustering step (single linkage)

Objects A B, C D E F G

A 0

B, C 36.249 0

D 28.160 38.275 0

E 57.801 23.854 40.497 0

F 64.288 49.649 39.446 39.623 0

G 81.320 84.291 53.852 81.302 43.081 0

Note: Smallest distance is printed in bold.

. Table 9.4 Distance matrix after second clustering step (single linkage)

Objects A B, C, E D F G

A 0

B, C, E 36.249 0

D 28.160 38.275 0

F 64.288 39.623 39.446 0

G 81.320 81.302 53.852 43.081 0

Note: Smallest distance is printed in bold.

. Table 9.5 Distance matrix after third clustering step (single linkage)

Objects A, D B, C, E F G

A, D 0

B, C, E 36.249 0

F 39.446 39.623 0

G 53.852 81.302 43.081 0

Note: Smallest distance is printed in bold.

. Table 9.6 Distance matrix after fourth clustering step (single linkage)

Objects A, B, C, D, E F G

A, B, C, D, E 0

F 39.446 0

G 53.852 43.081 0

Note: Smallest distance is printed in bold.

9
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9.3.2.2 Partitioning Methods: k-means
Partitioning clustering methods are another important group of procedures. As with hier-
archical clustering, there is a wide array of different algorithms; of these, k-means is the 
most popular for market research.

z Understanding k-means Clustering

The k-means method follows an entirely different concept than the hierarchical methods 
discussed above. The initialization of the analysis is one crucial difference. Unlike with 
hierarchical clustering, we need to specify the number of clusters to extract from the 
data prior to the analysis. Using this information as input, k-means starts by randomly 
assigning all objects to the clusters. In the next step, k-means successively reassigns 
the objects to other clusters with the aim of minimizing the within-cluster variation. 
This within-cluster variation is equal to the squared distance of each observation to 
the center of the associated cluster (i.e., the centroid). If the reallocation of an object 
to another cluster decreases the within-cluster variation, this object is reassigned to 
that cluster.

Since cluster affiliations can change in the course of the clustering process (i.e., an 
object can move to another cluster in the course of the analysis), k-means does not build 
a hierarchy as hierarchical clustering does (. Fig. 9.4). Therefore, k-means belongs to the 
group of non-hierarchical clustering methods.

For a better understanding of the approach, let’s take a look at how it works in practice. 
. Figs. 9.10, 9.11, 9.12 and 9.13 illustrate the four steps of the k-means clustering process—
research has produced several variants of the original algorithm, which we briefly discuss 
in Box 9.2.

. Table 9.7 Distance matrix after fifth clustering step (single linkage)

Objects A, B, C, D, E, F G

A, B, C, D, E, F 0

G 43.081 0

Box 9.2 Variants of the original k-means method
k-medians is a popular variant of k-means, which essentially follows the same logic and 
procedure. However, instead of using the cluster mean as a reference point for the calculation 
of the within cluster variance, k-medians minimizes the absolute deviations from the cluster 
medians, which equals the city-block distance. Thus, k-medians does not optimize the squared 
deviations from the mean as in k-means, but absolute distances. Thereby k-median avoids the 
possible effect of extreme values on the cluster solution. Other variants use other cluster centers 
(e.g., k-medoids; Kaufman and Rousseeuw 2005; Park and Jun 2009), or optimize the initialization 
process (e.g., k-means++; Arthur and Vassilvitskii 2007). However, neither of these variants is 
menu-accessible in SPSS.
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. Fig. 9.10 k-means procedure (step 1: placing random cluster centers)

 4 Step 1: The researcher needs to specify the number of clusters that k-means should 
retain from the data. Using this number as the input, the algorithm selects a center 
for each cluster. In our example, two cluster centers are randomly initiated, which 
CC1 (first cluster) and CC2 (second cluster) represent in . Fig. 9.10.
 4 Step 2: Euclidean distances are computed from the cluster centers to every object. 

Each object is then assigned to the cluster center with the shortest distance to it. 
In our example (. Fig. 9.11), objects A, B, and C are assigned to the first cluster, 
whereas objects D, E, F, and G are assigned to the second. We now have our initial 
partitioning of the objects into two clusters.
 4 Step 3: Based on the initial partition in step 2, each cluster’s geometric center 
(i.e., its centroid) is computed. This is done by computing the mean values of 
the objects contained in the cluster (e.g., A, B, C in the first cluster) in terms of 
each of the variables (price consciousness and brand loyalty). As we can see in 
. Fig. 9.12, both clusters’ centers now shift to new positions (CC1’ in the first and 
CC2’ in the second cluster; the inverted comma indicates that the cluster center 
has changed).

9
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. Fig. 9.11 k-means procedure (step 2: assigning objects to the closest cluster center)

Naftali Harris’s website offers a nice visualization of k-means clustering:
https://www.naftaliharris.com/blog/visualizing-k-means-clustering/

Tip

 4 Step 4: The distances are computed from each object to the newly located cluster 
centers and the objects are again assigned to a certain cluster on the basis of their 
minimum distance to other cluster centers (CC1’ and CC2’). Since the cluster 
centers’ position changed with respect to the initial situation, this could lead to 
a different cluster solution. This is also true of our example, because object E is 
now—unlike in the initial partition—closer to the first cluster center (CC1’) than 
to the second (CC2’). Consequently, this object is now assigned to the first cluster 
(. Fig. 9.13).

The k-means procedure is now repeated until a predetermined number of iterations are 
reached, or convergence is achieved (i.e., there is no change in the cluster affiliations).

https://www.naftaliharris.com/blog/visualizing-k-means-clustering/
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. Fig. 9.12 k-means procedure (step 3: re-computing cluster centers)

Three aspects are worth noting in terms of using k-means:
 4 k-means is implicitly based on pairwise Euclidean distances, because the sum of 

the squared distances from the centroid is equal to the sum of the pairwise squared 
Euclidean distances divided by the number of objects. Hence, SPSS does not allow 
for selecting a distance measure—as in hierarchical clustering—but uses Euclidean 
distances. Therefore, the method should only be used with metric and, in case of 
equidistant scales, ordinal variables.
 4 Results produced by k-means depend on the starting partition. That is, k-means 

produce different results, depending on the starting partition chosen by the 
researcher or initiated by the software. In SPSS, the initialization depends on the 
ordering of the objects. As a result, k-means may converge in a local optimum, which 
means that the solution is only optimal compared to similar solutions, but not 
globally. Therefore, you should run k-means multiple with objects sorted in different 
random orders to verify the stability of a given solution.
 4 k-means is less computationally demanding than hierarchical clustering techniques. 

The method is therefore generally preferred for sample sizes above 500, and particu-
larly for big data applications.
 4 Running k-means requires specifying the number of clusters to retain prior to 

running the analysis. We discuss this issue in the next section.

9
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. Fig. 9.13 k-means procedure (step 4: reassigning objects to the closest cluster center)

9.3.2.3 Two-Step Cluster Analysis
Chiu et al.’s (2001) two-step cluster analysis is an alternative to k-means for very large data-
sets. As its name implies, the method follows a two-stage approach.

In the first stage, the method merges all objects into sub-clusters. To do so, the method 
successively screens all objects to decide whether an object is merged with an existing 
cluster or establishes a new sub-cluster. Thereby two-step clustering establishes a cluster 
feature tree with roots and leaves (. Fig. 9.14). Each of potentially eight roots consists of a 
maximum number of eight leaves. Each leave has a maximum number of eight sub-clus-
ters. Hence, two-step clustering allows for a maximum number of 8 · 8 · 8 = 512 sub-clus-
ters. Sub-clusters in one leave are similar to each other, as defined by the distance measure, 
whereas sub-clusters in different leaves are distinct. By establishing a cluster feature tree, 
two-step cluster analysis reduces computing time, which is an issue for very large datasets. 
In the second stage, two-step cluster analysis uses a modified hierarchical agglomerative 
clustering procedure to merge the sub-clusters.

One crucial advantage of the two-step cluster analysis is that it can handle categorical 
and continuous variables simultaneously. Hierarchical clustering and k-means are clearly 
limited in this regard as these methods require continuous variables (k-means) or vari-
ables measured on either a categorical, ordinal, or continuous scale (hierarchical cluster-
ing). Furthermore, two-step clustering allows for automatically selecting the number of 



322 Chapter 9 · Cluster Analysis

clusters based on statistical criteria. The procedure also indicates each variable’s importance 
for the construction of a specific cluster. Finally, two-step cluster analysis also offers an 
overall goodness-of-fit measure called silhouette measure of cohesion and sepearation. 
It is essentially based on the average distances between the objects and can vary between 
−1 and +1. A value of less than 0.20 indicates a poor solution quality, a value between 0.20 
and 0.50 a fair solution, whereas values higher than 0.50 indicate a good solution. These 
desirable features make the somewhat less popular two-step clustering a good alternative 
to the traditional methods.

9.3.3 Select a Measure of Similarity or Dissimilarity

In the previous section, we discussed different linkage algorithms used in agglomerative 
hierarchical clustering, the k-means procedure as well as two-step clutering. All these 
clustering procedures rely on measures that express the (dis)similarity between pairs of 
objects. In the following section, we introduce different measures for metric, ordinal, 
nominal, and binary variables.

9.3.3.1 Metric and Ordinal Variables
z Distance Measures
A straightforward way to assess two objects’ proximity is by drawing a straight line 
between them. For example, on examining the scatter plot in . Fig. 9.1, we can easily 
see that the length of the line connecting observations B and C is much shorter than the 
line connecting B and G. This type of distance is called Euclidean distance or straight 
line distance; it is the most commonly used type for analyzing metric variables and, if 
the scales are equidistant (7Chap. 3), ordinal variables. Researchers also often use the 
squared Euclidean distance.

In order to use a clustering procedure, we need to express these distances mathemati-
cally. Using the data from Table 9.1, we can compute the Euclidean distance between cus-
tomer B and customer C (generally referred to as d(B,C)) by using variables x and y with 
the following formula:

Root
(all objects)

Root 1 Root 8

Leaf 1 Leaf 8 Leaf 57 Leaf 64

Sub-clusters
1 – 8

Sub-clusters
57 – 64

Sub-clusters
449 – 456

Sub-clusters
505 – 512

. Fig. 9.14 Cluster feature tree

9
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d B C x x y yEuclidean B C B C( , ) ( ) ( )= − + −2 2
 

As can be seen, the Euclidean distance is the square root of the sum of the squared differ-
ences in the variables’ values. Using the data from . Table 9.1, we obtain the following:

d B CEuclidean , .( )= −( ) + −( ) = ≈82 66 94 80 452 21 2602 2
 

This distance corresponds to the length of the line that connects objects B and C. In this 
case, we only used two variables, but we can easily add more under the root sign in the 
formula. However, each additional variable will add a dimension (e.g., with six clustering 
variables, we have to deal with six dimensions), making it difficult to represent the solu-
tion graphically. Similarly, we can compute the distance between customer B and G, which 
yields the following:

d B GEuclidean , , .( )= −( ) + −( ) = ≈82 10 94 17 11113 105 4182 2

 

We should also compute the distance between all other pairs of objects and summarize 
them in a distance matrix. . Table 9.2 shows the Euclidean distance matrix for objects A-G.

There are also alternative distance measures: The city-block distance uses the sum of the 
variables’ absolute differences. This distance measure is referred to as the Manhattan metric 
as it is akin to the walking distance between two points in a city like New York’s Manhat-
tan district, where the distance equals the number of blocks in the directions North-South 
and East-West. Using the city-block distance to compute the distance between customers 
B and C (or C and B) yields the following:

d B C x x y yCity block B C B C− = − + − = − + − =( , ) 8 2 66 9 4 8 0 3 0  

The resulting distance matrix is shown in . Table 9.8.

. Table 9.8 City-block distance matrix

Objects A B C D E F G

A 0

B 50 0

C 48 30 0

D 31 79 49 0

E 81 37 33 56 0

F 79 93 63 54 56 0

G 101 149 119 70 112 56 0
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. Fig. 9.15 Distance measures

z Association Measures
The (dis)similarity between objects can also be expressed using association measures (e.g., 
correlations). For example, suppose a respondent rated price consciousness 2 and brand 
loyalty 3, a second respondent indicated 5 and 6, whereas a third rated these variables 3 
and 3. Euclidean and city-block distances would indicate that the first respondent is more 

Lastly, when working with metric (or ordinal) data, researchers frequently use the Che-
bychev distance, which is the maximum of the absolute difference in the clustering vari-
ables’ values. For customers B and C, this is calculated as:

d B C max x x y y maxChebychev B C B C, , ,( )= − −( ) = − −( )=82 66 94 80 16

. Figure 9.15 illustrates the interrelation between these three distance measures regarding 
two objects (here: B and G) from our example.

Different distance measures typically lead to different cluster solutions. Thus, it is 
advisable to use several measures, check for the stability of results, and compare them 
with theoretical or known patterns.

Tip

9
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similar to the third than to the second. Nevertheless, one could convincingly argue that 
the first respondent’s ratings are more similar to the second’s, as both rate brand loyalty 
higher than price consciousness. This can be accounted for by computing the correlation 
between two vectors of values as a measure of similarity (i.e., high correlation coefficients 
indicate a high degree of similarity). Consequently, similarity is no longer defined as the 
difference between the answer categories, but as the similarity of the answering profiles.

Whether you use one of the distance measures or correlations depends on whether 
you think the relative magnitude of the variables within an object (which favors 
correlation) matters more than the relative magnitude of each variable across the 
objects (which favors distance). Some researchers recommended using correlations 
when applying clustering procedures that are particularly susceptible to outliers, such 
as complete linkage, average linkage, or centroid linkage. Furthermore, correlations 
implicitly standardize the data, as differences in the scale categories do not have a 
strong bearing on the interpretation of the response patterns. Nevertheless, distance 
measures are most commonly used for their intuitive interpretation. Distance 
measures best represent the concept of proximity, which is fundamental to cluster 
analysis. Correlations, although having widespread application in other techniques, 
represent patterns rather than proximity.

Tip

z Standardizing the Data
In many analysis tasks, the variables under consideration are measured in different units 
with hugely different variance. This would be the case if we extended our set of cluster-
ing variables by adding another metric variable representing the customers’ gross annual 
income. Since the absolute variation of the income variable would be much higher than 
the variation of the remaining two variables (remember, x and y are measured on a scale 
from 0 to 100), this would significantly change our analysis results. We can resolve this 
problem by standardizing the data prior to the analysis (7 Chap. 5).

Different standardization methods are available, such as z-standardization, which res-
cales each variable to a mean of 0 and a standard deviation of 1 (see 7 Chap. 5). In cluster 
analysis, however, range standardization (e.g., to a range of 0 to 1) typically works better 
(Milligan and Cooper 1988).

9.3.3.2 Binary and Nominal Variables
Whereas the distance measures presented thus far can be used for variables measured on 
a metric and, in general, on an ordinal scale, applying them to binary and nominal vari-
ables is problematic. When nominal variables are involved, you should instead select a 
similarity measure expressing the degree to which the variables’ values share the same 
category. These matching coefficients can take different forms, but rely on the same allo-
cation scheme as shown in . Table 9.9. In this crosstab, cell a is the number of character-
istics present in both objects A and B, whereas cell d describes the number of character-
istics absent in both objects. Cells b and c describe the number of characteristics present 
in one, but not the other, object.
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The allocation scheme in . Table 9.9 applies to binary variables (i.e., nominal variables 
with two categories). For nominal variables with more than two categories, you need to 
convert the categorical variable into a set of binary variables in order to use matching coef-
ficients. For example, a variable with three categories needs to be transformed into three 
binary variables, one for each category (see the following example).

Based on the allocation scheme in . Table 9.9, we can compute different matching coef-
ficients, such as the simple matching (SM) coefficient:

SM a d
a b c d

= +
+ + +  

This coefficient takes both the joint presence and the joint absence of a characteristic (as 
indicated by cells a and d in . Table 9.9) into account. This feature makes the simple match-
ing coefficient particularly useful for symmetric variables where the joint presence and 
absence of a characteristic carry an equal degree of information. For example, the binary 
variable gender has the possible states “male” and “female.” Both are equally valuable and 
carry the same weight when the simple matching coefficient is computed. However, when 
the outcomes of a binary variable are not equally important (i.e., the variable is asymmet-
ric), the simple matching coefficient proves problematic. An example of an asymmetric 
variable is the presence, or absence, of a relatively rare attribute, such as customer com-
plaints. While you say that two customers who complained have something in common, 
you cannot say that customers who did not complain have something in common. The 
most important outcome is usually coded as 1 (present) and the other is coded as 0 (absent). 
The agreement of two 1s (i.e., a positive match) is more significant than the agreement of 
two 0s (i.e., a negative match). Similarly, the simple matching coefficient proves problem-
atic when used on nominal variables with many categories. In this case, objects may appear 
very similar, because they have many negative matches rather than positive matches.

Given this issue, researchers have proposed several other matching coefficients, such as 
the Jaccard coefficient (JC) and the Russell and Rao coefficient, which (partially) omit the d cell 
from the calculation. Like the simple matching coefficient, these coefficients range from 0 
to 1 with higher values indicating a greater degree of similarity.4 They are defined as follows:

4 There are many other matching coefficients, with exotic names such as Yule’s Q, Kulczynski, or Ochiai, 
which are also menu-accessible in SPSS. As most applications of cluster analysis rely on metric or 
ordinal data, we will not discuss these. See Wedel and Kamakura (2000) for more information on 
alternative matching coefficients.

. Table 9.9 Allocation scheme for matching coefficients

Second object

Presence of a charac-
teristics (1)

Absence of a charac-
teristic (0)

First object Presence of a characteristic (1) a b

Absence of a characteristic (0) c d

9
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JC a
a b c

RR a
a b c d

=
+ +

=
+ + +  

To provide an example that compares the three coefficients, consider the following three 
variables:
 4 gender: male, female
 4 customer: yes, no
 4 country of residence: GER, UK, USA

We first transform the measurement data into binary data by recoding the original three 
variables into seven binary variables (i.e., two for gender and customer; three for country 
of residence). . Table 9.10 shows a binary data matrix for three objects A, B, and C. Object 
A is a male customer from Germany; object B is a male non-customer from the United 
States; object C is a female non-customer, also from the United States. 

Using the allocation scheme from . Table 9.9 to compare objects A and B yields the 
following results for the cells: a = 1, b = 2, c = 2, and d = 2. This means that the two objects 
have only one shared characteristic (a = 1), but two characteristics, which are absent from 
both objects (d = 2). Using this information, we can now compute the three coefficients 
described earlier:

SM A B( , ) . ,= +
+ + +

=1 2
1 2 2 2

0 571
 

  
JC A B( , ) .=

+ +
=1

1 2 2
0 2

, and

RR A B( , ) .=
+ + +

=1
1 2 2 2

0 143
 

As we can see, the simple matching coefficient suggests that objects A and B are reason-
ably similar. Conversely, the Jaccard coefficient, and particularly the Russel Rao coeffi-
cient, suggests that they are not.

. Table 9.10 Recoded measurement data

Object Gender
(binary)

Customer
(binary)

Country of residence
(binary)

Male Female Yes No GER UK USA

A 1 0 1 0 1 0 0

B 1 0 0 1 0 0 1

C 0 1 0 1 0 0 1
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Try computing the distances between the other object pairs. Your computation 
should yield the following: SM(A,C) = 0.143, SM(B,C) = 0.714, JC(A,C) = 0, JC(B,C) = 0.5, 
RR(A,C) = 0, and RR(B,C) = 0.286.

9.3.3.3 Mixed Variables
Most datasets contain variables that are measured on multiple scales. For example, a market 
research questionnaire may require the respondent’s gender, income category, and age. 
We therefore have to consider variables measured on a nominal, ordinal, and metric scale. 
How can we simultaneously incorporate these variables into an analysis?

Often research use the distance measures discussed in the context of metric (and 
ordinal) data. Even though this approach may slightly change the results compared to 
using matching coefficients, it should not be rejected. Cluster analysis is mostly an explor-
atory technique whose results only provide guidance for making decisions but are no sub-
stitute for decision-making.

An alternative is to dichotomize all the variables and apply the matching coeffi-
cients discussed above. For metric variables, this involves specifying categories (e.g., low, 
medium, and high age) and converting these into sets of binary variables. In most cases, 
the specification of categories is somewhat arbitrary. Furthermore, this procedure leads 
to a severe loss in precision, as we disregard more detailed information on each object. 
For example, we lose precise information on each respondent’s age when scaling this vari-
able down into age categories. Given such issues, you should avoid combining metric and 
nominal variables in a single cluster analysis.

Another way to handle variables measured on different scale levels is to use the two-
step cluster analysis (see 7 Sect. 9.3.2.3). This method uses a distance measure that draws 
on probability distributions. Specifically, this distance defines the distance between two 
objects in terms of the decrease of the likelihood value when merging them.

9.3.4 Decide on the Number of Clusters

An important question we haven’t yet addressed is how to decide on the number of clus-
ters. A misspecified number of clusters results in under- or oversegmentation, which easily 
leads to inaccurate management decisions on, for example, customer targeting, product 
positioning, or determining the optimal marketing mix (Becker et al. 2015).

We can select the number of clusters pragmatically, choosing a grouping that “works” 
for our analysis, but sometimes we want to select the “best” solution that the data suggest. 
However, different clustering methods require different approaches to decide on the 
number of clusters. Hence, we discuss hierarchical and portioning methods separately.

9.3.4.1 Hierarchical Methods
To guide the decision of how many clusters to extract from the data, we can draw on the 
distances at which the objects were combined. More precisely, we can seek a solution in 
which an additional combination of clusters or objects would occur at a greatly increased 
distance. This raises the issue of what a great distance is.

We can seek an answer by plotting the distance level at which the mergers of objects 
and clusters occur by using a dendrogram. . Figure 9.16 shows the dendrogram for our 
example as produced by SPSS. We read the dendrogram from the left to the right. The 

9
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horizontal lines indicate the distances at which the objects were merged. Note that in 
SPSS, these distances do not correspond to the actual merging distances as computed in 
Tables 9.2, 9.3, 9.4, 9.5 and 9.7. Instead, SPSS rescales the distances to a range of 0–25 (i.e., 
the last merging step to a one-cluster solution takes place at a rescaled distance of 25). The 
rescaling on the x-axis facilitates the decision on how many clusters to extract from the 
data. Specifically, to decide on the number of clusters, we cut the dendrogram vertically 
in the area where no merger has occurred for a long distance. In our example, this is done 
when moving from a four-cluster solution, which occurs at a rescaled distance of 8, to a 
three-cluster solution, which occurs at a distance of 18. This result suggests a four-cluster 
solution [A,D], [B,C,E], [F], and [G], but this conclusion is not clear-cut. In fact, the den-
drogram often does not provide a clear indication, because it is generally difficult to iden-
tify where the cut should be made. This is particularly true of large sample sizes when the 
dendrogram becomes unwieldy.

As an alternative to the dendrogram, we can also contrast the distances against the 
number of clusters to produce a scree plot, similar to the one used to decide on the number 
of factors in factor analysis (7 Chap. 8). Specifically, we can plot the number of clusters on 
the x-axis (starting with the one-cluster solution at the very left) against the distance at 
which objects or clusters are merged on the y-axis. Using this plot, we then search for the 
distinctive break (elbow), which indicates the number of clusters to retain. Note that—
unlike in factor analysis—we do not pick the solution with one cluster less than indicated 
by the elbow. Furthermore, the distances typically sharply increase when switching from 
a two-cluster solution to a one-cluster solution. However, this break should not be viewed 
as a reliable indicator for the decision regarding the number of segments.

Dendrogram using Single Linkage
Rescaled Distance Cluster Combine
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. Fig. 9.16 Dendrogram
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Research has produced several other criteria for determining the number of clusters 
in a dataset. One of the most prominent criteria is Calinski and Harabasz’s (1974) variance 
ratio criterion (VRC). For a solution with n objects and k clusters, the VRC is defined as:

VRC SS K SS n Kk B W= − −( / ( )) / ( / ( )),1  

where SSB is the sum of the squares between the clusters and SSW is the sum of the squares 
within the clusters. The criterion should seem familiar, as it is equivalent to the F-value of a 
one-way ANOVA (7 Chap. 6). To determine the appropriate number of clusters, you should 
choose the number that maximizes the VRC. However, as the VRC usually decreases with 
a greater number of clusters, you should compute the difference in the VRC values ωk of 
each cluster solution, using the following formula:

ωk k k k kVRC VRC VRC VRC= − − −+ −( ) ( ).1 1  

The number of clusters k that minimizes the value in ωk indicates the best cluster solution. 
Prior research has shown that the VRC reliably identifies the correct number of clusters 
across a broad range of constellations (Miligan and Cooper 1985). However, owing to the 
term VRC k−1, which is not defined for a one-cluster solution, the minimum number of 
clusters that can be selected is three, which is a disadvantage when using the ωk statistic.

To compute the VRC, we need to run a series of ANOVAs using the clustering vari-
ables as dependent variables and the cluster affiliation as the factor variable. The VRC for 
a certain number of clusters k results from summing all the F-value across the different 
ANOVAs. Note that the computation of the VRC values is more straightforward when 
running k-means clustering as SPSS allows running ANOVAs on the clustering variables 
as part of this clustering procedure.

>  Overall, the above criteria can often only provide rough guidance regarding 
the number of clusters that should be selected–you should also take practical 
considerations into account. Occasionally, you might have a priori knowledge, 
or a theory on which you can base your choice. However, first and foremost, you 
should ensure that your results are interpretable and meaningful. Not only must 
the number of clusters be small enough to ensure manageability, but each segment 
should also be large enough to warrant strategic attention.

9.3.4.2 Partitioning Methods
When running partitioning methods, such as k-means, you have to pre-specify the number 
of clusters to retain from the data. There are varying ways of guiding this decision:
 4 Compute the VRC (see discussion in the context of hierarchical clustering) for an 

alternating number of clusters and select the solution that maximizes the VRC or 
minimizes ωk. For example, compute the VRC for a three- to five-cluster solution 
and select the number of clusters that minimizes ωk.
 4 Run a hierarchical procedure to determine the number of clusters by using the 

dendrogram and run k-means afterwards.5 This approach also enables you to find 

5 See Punji and Stewart (1983) for additional information on this sequential approach.

9
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starting values for the initial cluster centers to handle a second problem, which 
relates to the procedure’s sensitivity to the initial classification (we will follow this 
approach in the example application).
 4 Rely on prior information, such as earlier research findings.

9.3.4.3 Two-step Clustering
One crucial advantage of two-step clustering is that the method allows for automatically 
selecting the number of clusters based on statistical criteria. In doing so, two-step cluster-
ing follows a two-stage approach (Bacher et al. 2004).

In the first stage, the method determines a maximum number of clusters based on 
Akaike’s Information Criterion (AIC; Akaike 1973) or the Bayes Information Criterion (BIC; 
Schwarz 1978), depending on the researcher’s specification. These criteria add different 
terms to the log likelihood value resulting from the analysis, which penalize the complex-
ity of the solution as expressed by the number of clusters—solutions with a more clusters 
entail a stronger penalty term. In SPSS, the maximum number of clusters is determined 
by the ratio between AIC (or BIC) for a solution with k clusters and a one-cluster solu-
tion. The solution for which this ratio is smaller than a certain threshold assumed by the 
program is the maximum number of clusters.

In the second stage, two-step clustering computes the ratio of distances between dif-
ferent cluster solutions using the AIC (or BIC) values as input. The resulting ratio deter-
mines the final number of clusters to extract.

9.3.5 Validate and Interpret the Clustering Solution

Before interpreting the cluster solution, we need to assess the stability of the results. Sta-
bility means that the cluster membership of individuals does not change, or only changes 
a little when different clustering methods are used to cluster the objects. Thus, when dif-
ferent methods produce similar results, we claim stability.

The aim of any cluster analysis is to differentiate well between the objects. The identified 
clusters should therefore differ substantially from each other and the members of different 
clusters should respond differently to different marketing-mix elements and programs.

Lastly, we need to profile the cluster solution by using observable variables. Profiling 
ensures that we can easily assign new objects to clusters based on observable traits. For 
example, we could identify clusters based on loyalty to a product, but in order to use these 
different clusters, their membership should be identifiable according to tangible variables, 
such as income, location, or family size, in order to be actionable.

The key to successful segmentation is to critically revisit the results of different cluster analysis 
set-ups (e.g., by using different algorithms on the same data) in terms of managerial relevance. 
The following criteria help identify a clustering solution (Kotler and Keller 2015; Tonks 2009).

 5 Substantial: The clusters are large and sufficiently profitable to serve.
 5 Reliable: Only clusters that are stable over time can provide the necessary basis for a 

successful marketing strategy. If clusters change their composition quickly, or their members’ 
behavior, targeting strategies are not likely to succeed. Therefore, a certain degree of stability 
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9.3.5.1 Stability
Stability is evaluated by using different clustering procedures on the same data and con-
sidering the differences that occur. For example, you may first run a hierarchical cluster-
ing procedure, followed by k-means clustering to check whether the cluster affiliations of 
the objects change. Alternatively, running a hierarchical clustering procedure, you can use 
different distance measures and evaluate their effect on the stability of the results. However, 
note that it is common for results to change even when your solution is adequate. As a rule 
of thumb, if more than 20 % of the cluster affiliations change from one technique to the 
other, you should reconsider the analysis and use, for example, a different set of cluster-
ing variables, or reconsider the number of clusters. Note, however, that this percentage is 
likely to increase with the number of clusters used.

When the data matrix exhibits identical values (referred to as ties), the ordering of the 
objects in the dataset can influence the results of the hierarchical clustering procedure. 
For example, when computing the distance matrix based on the city-block distance for 
the data from . Table 9.1, object pairs (D,E), (E,F), and (F,G) have the same distance of 
56 units. Ties can prove problematic when they occur for the minimum distance in a dis-
tance matrix, as the decision about which objects to merge then becomes ambiguous (i.e., 
should we merge objects D and E, E and F, or F and G if 56 was the smallest distance in the 
matrix?). To handle this problem, Van Der Kloot et al. (2005) recommend re-running the 
analysis with a different input order of the data. The downside of this approach is that the 
labels of a cluster may change from one analysis to the next. This issue is referred to as label 
switching. For example, in the first analysis, cluster 1 may correspond to cluster 2 in the 
second analysis. Ties are, however, more the exception than the rule in practical applica-
tions—especially when using (squared) Euclidean distances—and generally don't have a 
pronounced impact on the results. However, if changing the order of the objects also dras-
tically changes the cluster compositions (e.g., in terms of cluster sizes), you should recon-
sider the set-up of the analysis and, for example, re-run it with different clustering variables.

9.3.5.2 Differentiation of the Data
To examine whether the final partition differentiates the data well, we need to examine 
the cluster centroids. This step is highly important, as the analysis sheds light on whether 
the clusters are truly distinct. Only if objects across two (or more) clusters exhibit sig-
nificantly different means in the clustering variables (or any other relevant variable) can 

is necessary to ensure that marketing strategies can be implemented and produce adequate 
results. Reliability can be evaluated by critically revisiting and replicating the clustering 
results at a later date.

 5 Accessible: The clusters can be effectively reached and served.
 5 Actionable: Effective programs can be formulated to attract and serve the clusters.
 5 Parsimonious: To be managerially meaningful, only a small set of substantial clusters should 

be identified.
 5 Familiar: To ensure management acceptance, the cluster composition should be easy to 

relate to.
 5 Relevant: Clusters should be relevant in respect of the company’s competencies and 

objectives.

9
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they be distinguished from each other. This can be easily ascertained by comparing the 
means of the clustering variables across the clusters with independent t-tests or ANOVA 
(see 7 Chap. 6).

Furthermore, we need to assess the solution’s criterion validity (see 7 Chap. 4). We do 
this by focusing on the criterion variables that have a theoretical relationship with the clus-
tering variables, but were not included in the analysis. In market research, criterion vari-
ables are usually managerial outcomes, such as the sales per person, or willingness-to-pay. 
If these criterion variables differ significantly, we can conclude that the clusters are distinct 
groups with criterion validity.

9.3.5.3 Profiling
As indicated at the beginning of the chapter, cluster analysis usually builds on unob-
servable clustering variables. This creates an important problem when working with the 
final solution: How can we decide to which cluster a new object should be assigned if its 
unobservable characteristics, such as personality traits, personal values, or lifestyles, are 
unknown? We could survey these attributes and make a decision based on the clustering 
variables. However, this is costly and researchers therefore usually try to identify observ-
able variables (e.g., demographics) that best mirror the partition of the objects. More pre-
cisely, these observable variables should partition the data into similar groups as the clus-
tering variables do. Using these observable variables, it is then easy to assign a new object 
(whose cluster membership is unknown) to a certain cluster. For example, assume that we 
used a set of questions to assess the respondents’ values and learned that a certain cluster 
contains respondents who appreciate self-fulfillment, enjoyment of life, and a sense of 
accomplishment, whereas this is not the case in another cluster. If we were able to identify 
explanatory variables, such as gender or age, which distinguish these clusters adequately, 
then we could assign a new person to a specific cluster on the basis of these observable 
variables whose value traits may still be unknown.

9.3.5.4 Interpret the Clustering Solution
The interpretation of the solution requires characterizing each cluster by using the crite-
rion or other variables (in most cases, demographics). This characterization should focus 
on criterion variables that convey why the cluster solution is relevant. For example, you 
could highlight that customers in one cluster have a lower willingness to pay and are sat-
isfied with lower service levels, whereas customers in another cluster are willing to pay 
more for a superior service. By using this information, we can also try to find a meaningful 
name or label for each cluster; that is, one that adequately reflects the objects in the cluster. 
This is usually a challenging task, especially when unobservable variables are involved.

While companies develop their own market segments, they frequently use standardized 
segments, based on established buying trends, habits, and customers’ needs to position 
their products in different markets. The PRIZM lifestyle by Nielsen is one of the most popular 
segmentation databases. It combines demographic, consumer behavior, and geographic data 
to help marketers identify, understand, and reach their customers and prospective customers. 
PRIZM defines every US household in terms of more than 60 distinct segments to help 
marketers discern these consumers’ likes, dislikes, lifestyles, and purchase behaviors.
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. Table 9.11 Steps involved in carrying out a cluster analysis in SPSS

Theory Action

Research problem

Identification of homogenous groups of objects in a population

Select clustering 
variables to form 
segments

Select relevant variables that potentially exhibit high degrees of criterion 
validity with regard to a specific managerial objective.

Requirements

Sufficient sample 
size

Make sure that the relationship between the objects and the clustering vari-
ables is reasonable. Ten times the number of clustering variables is the bare 
minimum, but 30 to 70 times is recommended. Ensure that the sample size is 
large enough to guarantee substantial segments.

Low levels of 
collinearity 
among the 
variables

► Analyze ► Correlate ► Bivariate

In case of highly correlated variables (correlation coefficients > 0.90), delete 
one variable of the offending pair.

Specification

Choose the 
clustering 
procedure

If there is a limited number of objects in your dataset or you do not know the 
number of clusters:

► Analyze ► Classify ► Hierarchical Cluster

If there are many observations (> 500) in your dataset and you have a priori 
knowledge regarding the number of clusters:

► Analyze ► Classify ► K-Means Cluster

If there are many observations in your dataset and the clustering variables 
are measured on different scale levels:

► Analyze ► Classify ► Two-Step Cluster

Choose clustering 
algorithm

(only hierarchical 
clustering)

► Analyze ► Classify ► Hierarchical Cluster ► Method ► Cluster Method

Use Ward’s method if equally sized clusters are expected and no outliers are 
present. Preferably use single linkage, also to detect outliers.

. Table 9.11 summarizes the steps involved in a hierarchical, k-means, and two-step clus-
tering using SPSS.

An example is the segment labeled “Connected Bohemians,” which Nielsen characterizes as 
a “collection of mobile urbanites, Connected Bohemians represent the nation's most liberal 
lifestyles. Its residents are a progressive mix of tech savvy, young singles, couples, and families 
ranging from students to professionals. In their funky row houses and apartments, Bohemian 
Mixers are the early adopters who are quick to check out the latest movie, nightclub, laptop, and 
microbrew.” Members of this segment are between 25 and 44 years old, have a midscale income, 
own a hybrid vehicle, eat at Starbucks, and go skiing/snowboarding. (www.MyBestSegments.com).

9
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Theory Action

Select a measure 
of (dis)similarity

Hierarchical methods:

► Analyze ► Classify ► Hierarchical Cluster ► Method ► Measure

Depending on the scale level, select the measure;

convert variables with multiple categories into a set of binary variables and 
use matching coefficients; standardize variables if necessary (on a range of 
0 to 1).

k-means clustering:

Uses Euclidean distances per default.

Two-step clustering:

► Analyze ► Classify ► Two-Step Cluster ► Distance Measure

Use Euclidean distances when all variables are continuous; for mixed vari-
ables, you have to use the log-likelihood.

Deciding on 
the number of 
clusters

Hierarchical clustering:

Examine the dendrogram:

► Analyze ► Classify ► Hierarchical Cluster ► Plots ►Dendrogram

Draw a scree plot: Double-click on the Agglomeration Schedule in the 
output window, highlight all coefficients in the column and right-click the 
mouse button. In the menu that opens up, select Create Graph ► Line

Compute the VRC using an ANOVA:

► Analyze ► Compare Means ► One-Way ANOVA

Move the cluster membership variable in the Factor box and the clustering 
variables in the Dependent List box;

Compute VRC for each segment solution and compare values.

Include practical considerations in your decision.

k-means:

Run a hierarchical cluster analysis and decide on the number of segments 
based on a dendrogram or scree plot; use this information to run k-means 
with k clusters.

Compute the VRC using an ANOVA:

► Analyze ► Classify ► K-Means Cluster ► Options ►ANOVA table;

Compute VRC for each segment solution and compare values.

Include practical considerations in your decision.

Two-step clustering:

Specify the maximum number of clusters:

► Analyze ► Classify ► Two-Step Cluster ►Number of Clusters

Run separate analyses using the AIC and BIC as clustering criteria:

► Analyze ► Classify ► Two-Step Cluster ► Clustering Criterion

Examine the model summary output.

Include practical considerations in your decision.

. Table 9.11 (Continued)
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Theory Action

Validating and interpreting the cluster solution

Stability Re-run the analysis using different clustering procedures, algorithms or dis-
tance measures.

Change the order of objects in the dataset.

Differentiation of 
the data

Compare the cluster centroids across the different clusters for significant 
differences.

If possible, assess the solution’s criterion validity.

Profiling Identify observable variables (e.g., demographics) that best mirror the parti-
tion of the objects based on the clustering variables.

Interpreting 
of the cluster 
solution

Identify names or labels for each cluster and characterize each cluster using 
observable variables.

. Table 9.11 (Continued)

9.4 Example

Let’s go back to the Oddjob Airways case study and run a cluster analysis on the data. Our 
aim is to identify a manageable number of segments that differentiates the customer base 
well. To do so, we first select a set of clustering variables, taking the sample size and poten-
tial collinearity issues into account. Next, we apply hierarchical clustering based on the 
squared Euclidean distances, using the Ward’s linkage algorithm. This analysis will help 
us determine a suitable number of segments and a starting partition, which we will then 
use as the input for k-means clustering.

9.4.1 Hierarchical Cluster Analysis

9.4.1.1 Select the Clustering Variables
The Oddjob Airways dataset (↓ Web Appendix → Downloads) offers several variables for 
segmenting its customer base. Our analysis draws on the following set of variables, which 
we consider promising for identifying distinct segments based on customers’ expectations 
regarding the airline’s service quality (variable names in parentheses):
 4 With Oddjob Airways you will arrive on time (e1),
 4 Oddjob Airways provides you with a very pleasant travel experience (e5),
 4 Oddjob Airways gives you a sense of safety (e9),
 4 Oddjob Airways makes traveling uncomplicated (e21), and
 4 Oddjob Airways provides you with interesting on-board entertainment, service, and 

information sources (e22).

With five clustering variables, our analysis meets even the most conservative rule-of-thumb 
regarding minimum sample size requirements. Specifically, according to Dolnicar et al. 

9
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. Fig. 9.17 Bivariate correlations dialog box

(2016), the cluster analysis should draw on 100 times the number of clustering variables to 
optimize cluster recovery. As our sample size of 1065 is clearly higher than 5 · 100 = 500, we 
can proceed with the analysis. Note, however, that the actual sample size used in the analy-
sis may be substantially lower when using casewise deletion. This also applies to our analy-
sis, which draws on 969 objects (i.e., after casewise deletion) as we can see in . Table 9.16.

To begin with, we examine the variable correlations by clicking on ► Analyze ► Cor-
relate ► Bivariate. Next, enter the variables e1, e5, e9, e21, and e22 into the Variables box 
(. Fig. 9.17). Click on OK and SPSS will display the results (. Table 9.12).

The results show that collinearity is not at a critical level. The variables e1 and e21 show 
the highest correlation of 0.613, which is clearly lower than the 0.90 threshold. We can 
therefore proceed with the analysis, using all five clustering variables.

9.4.1.2 Select the Clustering Procedure and a Measure of Similarity 
or Dissimilarity

To initiate hierarchical clustering, go to ► Analyze ► Classify ► Hierarchical Cluster, 
which opens a dialog box similar to . Fig. 9.18.

Move the variables e1, e5, e9, e21, and e22 into the Variable(s) box. The Statistics option 
gives us the opportunity to request the distance matrix (labeled proximity matrix in this 
case) and the agglomeration schedule, which provides information on the objects being 
combined at each stage of the clustering process. Furthermore, we can specify the number 
or range of clusters to retain from the data. As we do not yet know how many clusters to 
retain, just check the box Agglomeration schedule and continue.

Under Plots, check the box Dendrogram to graphically display the distances at which 
objects and clusters are joined. SPSS also offers the option to display an Icicle diagram 
(All clusters), which is yet another graph for displaying clustering solutions. Its name stems 
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. Table 9.12 Bivariate correlations output

Correlations

e1 e5 e9 e21 e22

e1 Pearson 
 Correlation

1 .515** .533** .613** .370**

Sig. 
(2-tailed)

.000 .000 .000 .000

N 1038 1026 1023 1018 997

e5 Pearson 
 Correlation

.515** 1 .525** .574** .530**

Sig. 
(2-tailed)

.000 .000 .000 .000

N 1026 1041 1023 1017 998

e9 Pearson 
 Correlation

.533** .525** 1 .522** .417**

Sig. 
(2-tailed)

.000 .000 .000 .000

N 1023 1023 1036 1016 996

e21 Pearson 
 Correlation

.613** .574** .522** 1 .425**

Sig. 
(2-tailed)

.000 .000 .000 .000

N 1018 1017 1016 1028 989

e22 Pearson 
Correlation

.370** .530** .417** .425** 1

Sig. 
(2-tailed)

.000 .000 .000 .000

N 997 998 996 989 1012

** Correlation is significant at the 0.01 level (2-tailed).

from the analogy to rows of icicles hanging from the eaves of a house. The diagram is read 
from the bottom to the top; the columns correspond to the objects being clustered, and 
the rows represent the number of clusters. Given the great number of objects, we do not 
request the icicle diagram in our example.

The option Method allows us to specify the cluster method, the distance measure, and 
the type of standardization of values. Because of its versatility and general performance, 
we choose the Ward’s method and Squared Euclidean distance as distance measure. Even 
though all the variables used in our analysis are measured on a scale from 0 to 100, we 
standardize the data to account for differences in the variables’ variances. To do so, go to 
the Transform Values drop-down menu and select Range 0 to 1.

9
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. Fig. 9.18 Hierarchical cluster analysis dialog box

Finally, the Save option enables us to save cluster memberships for a single solution or 
a range of solutions. Saved variables can then be used in subsequent analyses to explore 
differences between groups. As a start, we will skip this option, so continue and click on 
OK in the main menu.

9.4.1.3 Decide on the Number of Clusters
First, we take a closer look at the agglomeration schedule (. Table 9.13), which displays 
the objects or clusters combined at each stage (columns Cluster 1 and Cluster 2) and the 
distances at which this merger takes place (column Coefficients). Given the great number 
of objects, we limit the display of the agglomeration schedule to the merger stages 200 
to 210. The table shows that in stage 200, objects 133 and 684 are merged at a distance of 
0.046. From here onward, the resulting cluster is labeled as indicated by the first object 
involved in this merger, which is object 133. The last column on the very right tells you in 
which stage of the algorithm this cluster will appear next. In this case, this happens in in 
stage 350, where this object is merged with object 409 at a distance of 0.359 (not shown).

Next, we use the agglomeration schedule to determine the number of segments to 
retain from the data. To do so, we generate a scree plot by plotting the distances (Coeffi-
cients column in . Table 9.13) against the number of clusters. The distinct break (elbow) 
indicates the solution regarding where an additional combination of two objects or clus-
ters would occur at a greatly increased distance. Thus, the number of clusters prior to this 
merger is the most probable solution. SPSS does not automatically provide this plot. To 
generate a scree plot we have to double-click the Agglomeration Schedule in the output 
window. Next, highlight all coefficients in the column and right-click the mouse button. 
In the menu that opens up, select Create Graph ► Line (. Fig. 9.19). SPSS will add a line 
chart to the output, which represents the scree plot.

The scree plot in . Fig. 9.20 shows that there is no clear elbow indicating a suitable 
number of clusters to retain. This result is quite common for datasets with several hundred 
objects.
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. Fig. 9.19 Generating a scree plot

. Table 9.13 Agglomeration schedule (partial screenshot)

Agglomeration Schedule

Stage

Cluster Combined

Coefficients

Stage Cluster First Appears

Next StageCluster 1 Cluster 2 Cluster 1 Cluster 2

… … … … … … …

200 133 684 .046 0 119 350

201 330 478 .047 91 0 429

202 723 881 .048 0 0 391

203 536 835 .049 0 0 319

204 250 712 .050 0 0 257

205 624 631 .051 0 0 363

206 370 505 .052 0 0 427

207 67 112 .053 0 0 370

208 444 853 .054 0 83 362

209 48 767 .055 0 0 325

210 563 572 .057 0 112 385

… … … … … … …

9
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. Fig. 9.20 Scree plot

Next, we should take a look at the dendrogram. We don’t display the dendrogram 
here because of the size of the dataset. Reading the dendrogram from left to right, we 
find that the vast majority of objects are merged at very small distances. The dendrogram 
also shows that the step from a three-cluster solution to a two-cluster solution occurs at a 
greatly increased distance. Hence, we assume a three-cluster solution and continue with 
the analysis.

9.4.1.4 Validate and Interpret the Clustering Solution
To get a first impression of the size and nature of the three clusters, let’s re-run the hierar-
chical cluster analysis, but this time, we pre-specify the number of segments. To do so, go 
back to ► Analyze ► Classify ► Hierarchical Cluster and select the Save option. In the 
dialog box that opens, select Single solution and enter 3 next to Number of clusters. Click 
on Continue followed by OK. When running the analysis, SPSS generates the same output 
but also adds one additional variable to your dataset (CLU3_1), which reflect each object’s 
cluster membership. SPSS automatically places CLU in front, followed by a 3 to identify 
the total number of clusters. The variable's values (1, 2, and 3) identify each object’s cluster 
membership.

To learn about the size of the clusters, go to ► Analyze ► Descriptive Statistics ► Fre-
quencies and enter CLU3_1 into the Variable(s) box. When clicking on OK, SPSS will open 
an output similar to . Table 9.14.
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The output in . Table 9.14 shows that the cluster analysis assigned 969 objects to the 
three segments; 96 objects were not assigned to any segment due to missing values. The 
first cluster is the largest among the three clusters with 516 objects, which translates into 
a relative cluster size of 53.3 %. Clusters 2 and 3 are smaller and similar in size with 238 
and 215 objects, respectively.

Next, we would like to compute the centroids of our clustering variables. To do so, 
split up the dataset using the Split File command (► Data ► Split File) (see 7 Chap. 5). 
Choose CLU3_1 as the grouping variable and select the option Compare groups. Next, go to 
► Analyze ► Descriptive Statistics ► Descriptives (see 7 Chap. 5) and request the mean, 
minimum, and maximum, as well as the standard deviations for the clustering variables 
e1, e5, e9, e21, and e22. . Table 9.15 shows the resulting output. The first column in the 
table indicates the cluster number with the first element (labeled with a dot) representing 
the group of missing values. However, we focus our analysis of the results on the first three 
groups and particularly the clustering variables’ mean values.

Comparing the variable means across the three clusters, we find that respondents 
in the first cluster have extremely high expectations regarding all five performance fea-
tures, as evidenced in average values of around 90 and higher. Respondents in the second 
cluster strongly emphasize punctuality (e1), while comfort (e5) and, particularly, enter-
tainment aspects (e22) are less important. Finally, respondents in the third cluster do 
not express high expectations in general, except in terms of security (e9). Based on these 
results, we could label the first cluster “the demanding traveler,” the second cluster “on-
time is enough,” and the third cluster “no thrills.” We could further check whether these 
differences in means are significant by using a one-way ANOVA as described in 7 Chap. 6.

In a further step, we can try to profile the clusters using sociodemographic variables. 
Specifically, we use crosstabs (see 7 Chap. 5) to contrast our clustering with the vari-
able flight_purpose, which indicates whether the respondents primarily fly for business 
purposes (flight_purpose = 1) or private purposes (flight_purpose = 2). Before doing so, 
we need to turn off the Split File command by going to ► Data ► Split File and click-
ing on Analyze all cases, do not create groups, followed by OK. Next, click on ► Analyze 
► Descriptive Statistics ► Crosstabs. In the dialog box that opens, enter CLU3_1 into the 

. Table 9.14 Frequencies

CLU3_1

Frequency Percent Valid Percent
Cumulative  

Percent

Valid 1 516 48.5 53.3 53.3

2 238 22.3 24.6 77.8

3 215 20.2 22.2 100.0

Total 969 91.0 100.0

Missing System 96 9.0

Total 1065 100.0

9
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. Table 9.15 Descriptive statistics

Descriptive Statistics

CLU3_1 N Minimum Maximum Mean Std. Deviation

. e1 69 2 100 79.09 23.522

e5 72 1 100 70.65 26.768

e9 67 43 100 81.99 18.709

e21 59 1 100 71.47 27.555

e22 43 2 100 61.35 23.931

Valid N (listwise) 0

1 e1 516 69 100 95.13 7.202

e5 516 25 100 86.98 14.519

e9 516 28 100 94.38 10.035

e21 516 50 100 89.89 11.507

e22 516 50 100 87.61 12.195

Valid N (listwise) 516

2 e1 238 53 100 92.58 9.165

e5 238 5 100 76.65 20.048

e9 238 19 100 89.77 15.189

e21 238 1 100 83.37 17.343

e22 238 1 75 47.16 15.865

Valid N (listwise) 238

3 e1 215 1 100 59.42 21.327

e5 215 1 100 58.28 19.658

e9 215 1 100 71.63 20.414

e21 215 1 100 56.73 19.303

e22 215 2 100 58.03 20.175

Valid N (listwise) 215

Row(s) box and flight_purpose into the Column(s) box. Also click on Statistics and select 
Chi-square and Contingency coefficient and click on Continue followed by OK. The results 
in . Table 9.16 show that the first cluster primarily consists of leisure travelers, whereas the 
majority of respondents in the second and third cluster are business travelers. With a p-
value of 0.003, the χ2-test statistic indicates a significant relationship between these two 
variables. However, the strength of the variables’ association is rather small, as indicated 
by the Contingency Coefficient of 0.108.
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The Oddjob Airways dataset offers various other variables such as age, gender, or status, 
which could be used to further profile the cluster solution. However, instead of testing these 
variables’ efficacy step-by-step, we proceed and assess the solution’s stability by running 
an alternative clustering procedure on the data. Specifically, we apply k-means clustering, 
using the cluster centers produced by the Ward’s linkage analysis as input for the starting 
partition, instead of letting k-means choose the centers.

To do so, we need to do some data management in SPSS, as the cluster centers have 
to be supplied in a specific format. Specifically, we need to aggregate the data first (briefly 
introduced in 7 Chap. 5). By going to ► Data ► Aggregate, SPSS opens a dialog box 
similar to . Fig. 9.21. Proceed by entering CLU3_1 into the Break Variable(s) box as well 
as e1, e5, e9, e21, and e22 into the Aggregated Variables box. When using the default set-
tings, SPSS computes the variables’ mean values along the lines of the break variable, which 
correspond to the cluster centers that we need for the k-means clustering. SPSS indicates 
this circumstance by the postifix _mean, added to each aggregate variable’s name. For k-
means to process the cluster centers, we need to delete the postfix _mean using the Name 

. Table 9.16 Crosstab

CLU3_1 * flight_purpose Crosstabulation

Count

flight_purpose

Total1 2

CLU3_1 1 232 284 516

2 137 101 238

3 114 101 215

Total 483 486 969

Chi-Square Tests

Value df Asymptotic Significance (2-sided)

Pearson Chi-Square 11.463a 2 .003

Likelihood Ratio 11.493 2 .003

Linear-by-Linear Association 6.432 1 .011

N of Valid Cases 969

a 0 cells (0.0%) have expected count less than 5. The minimum expected count is 107.17.

Symmetric Measures

Value Approximate Significance

Nominal by Nominal Contingency Coefficient .108 .003

N of Valid Cases 969

9
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. Fig. 9.21 Aggregate data dialog box

& Label. Finally, we do not want to add the aggregated variables to the active dataset, but 
rather need to create a new dataset comprising only the aggregated variables. Hence, select 
Create a new dataset containing only the aggregated variables and specify a dataset label 
such as aggregate (. Fig. 9.21). When clicking on OK, SPSS creates and opens a new dataset 
labeled aggregate.

The new dataset is almost in the right format—but we still need to change the break 
variable’s name from CLU3_1 to cluster_. SPSS will issue a warning but this can be safely 
ignored. Furthermore, we need to delete the first object, which includes the cluster centers 
of the missing values. The final dataset should have the form shown in . Fig. 9.22.

Everything is now set for the k-means cluster analysis. To run the analysis, select the 
original dataset Oddjob.sav and go to ► Analyze ► Classify ► K-Means Cluster. In the 
dialog box that opens (. Fig. 9.23), first move the five clustering variables into the Variables 
box. To use the cluster centers from our previous analysis, check the box Read initial and 
click on Open dataset. You can now choose the dataset labeled aggregate. In the Number of 
Clusters box, specify 3, which corresponds to the result of the hierarchical cluster analysis. 
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. Fig. 9.23 k-means cluster analysis dialog box

Next, click on Save and check the box Cluster Membership in order to create a new vari-
able indicating each object’s cluster membership as produced by k-means clustering. 
Under Options, you can request several statistics and specify how missing values should 
be treated. Ensure to request the Initial cluster centers as well as the ANOVA table. Now 
start the analysis.

The k-means procedure generates . Tables 9.17 and 9.18, which show the initial and 
final cluster centers. As we can see, there is a high degree of agreement between the initial 
cluster centers produced by the Ward’s linkage and the final cluster centers produced by 
k-means clustering. While some cluster centers changed (also indicated in the Iteration 
History output, not shown here), the clusters’ nature, as expressed by the cluster labels “the 
demanding traveler,” “on-time is enough,” and “no thrills,” remains intact.

To further check for the solution’s stability, we next explore the overlap in the two 
cluster solutions, by contrasting the objects’ cluster affiliations using crosstabs. To do so, 
go to ► Analyze ► Descriptive Statistics ► Crosstabs and select CLU3_1 under Row(s) 

. Fig. 9.22 Aggregated data file

9
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. Table 9.17 Initial cluster centers

Initial Cluster Centers

Cluster

1 2 3

e1 95 93 59

e5 87 77 58

e9 94 90 72

e21 90 83 57

e22 88 47 58

Input from FILE Subcommand

. Table 9.18 Final cluster centers

Final Cluster Centers

Cluster

1 2 3

e1 95 90 59

e5 92 74 55

e9 96 90 67

e21 92 81 54

e22 91 55 54

. Table 9.19 Comparison of clustering results

CLU3_1 * QCL_1 Crosstabulation

Count

QCL_1

Total1 2 3

CLU3_1 1 410 100 6 516

2 14 213 11 238

3 10 36 169 215

Total 434 349 186 969

and QCL_1 under Column(s). The latter variable represents the objects’ cluster affiliations 
as produced by the k-means clustering. After clicking on OK, SPSS will produce an output 
similar to . Table 9.19.
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The results show that there is a strong degree of overlap between the two cluster anal-
yses. For example, 410 objects that fall into the first cluster in the Ward’s linkage analysis 
also fall into this cluster in the k-means clustering. At the same time, however, 100 objects 
now appear in the second k-means cluster. This divergence is considerably lower in the 
second and third cluster. Overall, the two analyses have an overlap of (410 + 213 + 169)/
969 = 81.73 %, which is very satisfactory as less than 20 % of all objects appear in a differ-
ent cluster when using k-means.

In contrast to hierarchical clustering, the k-means outputs provide us with an ANOVA 
of the cluster centers (. Table 9.20). Since all the values in the final column Sig. are below 
0.05, we can conclude that all the clustering variables’ means differ significantly across at 
least two of the three segments.

Since we used the prior analysis results from hierarchical clustering as an input for the 
k-means procedure, the problem of selecting the correct number of segments is not prob-
lematic in this example. Complementing our prior analyses, we now compute the VRC for 
different numbers of clusters based on the k-means results. Specifically, we want use the 
VRC values to compute the ωk statistics for a three-, four-, and five-cluster solution. Since 
determining a suitable number clusters using the ωk statistic involves comparing the VRC 
values of solutions with one segment less than k and with one cluster more than k, we need 
to run k-means for a two- to six-cluster solution. To do so, go back to ► Analyze ► Clas-
sify ► K-Means Cluster. As we seek to run k-means with different numbers of clusters, we 
cannot use the initial cluster centers from the Ward’s linkage clustering. Hence, uncheck 
the box next to Read initial. Next, set the Number of Clusters to 2, run the analysis, and save 
the F-values for variables e1, e5, e9, e21, and e22 from the ANOVA table, which correspond 
to the VRC values. Repeat these steps for a three-, four-, five- and six-cluster solution, each 
time saving the F-values. . Table 9.21 summarizes the F-values from the ANOVA tables.

To compute the ωk statistic, we enter the F-values—which again, correspond to the 
VRC values—from . Table 9.21 into the following formula:

ωk k k k kVRC VRC VRC VRC= − − −+( ) ( ).1 1-  

. Table 9.20 ANOVA output

ANOVA

Cluster Error

F Sig.Mean Square df Mean Square df

e1 91964.042 2 170.733 966 538.643 .000

e5 94966.114 2 230.012 966 412.875 .000

e9 58156.159 2 164.349 966 353.857 .000

e21 96081.135 2 202.743 966 473.905 .000

e22 158600.747 2 227.709 966 696.508 .000

The F tests should be used only for descriptive purposes because the clusters have been chosen 
to maximize the differences among cases in different clusters. The observed significance levels 
are not corrected for this and thus cannot be interpreted as tests of the hypothesis that the 
cluster means are equal.

9
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For example, for a three-cluster solution, we compute

ω3 2 158 417 2 460 116 2 460 116 3 048 191 286 376= −( )− −( )=, . , . , . , . .  

Similarly, we can compute ωk for four and five clusters resulting in ω4= 72.794 and 
ω5= 10.674, respectively. Comparing the values, we find that the minimum ωk results for 
a five-cluster solution. However, looking into the cluster sizes of a five-cluster solution, 
shows that one cluster contains only 15 objects, which calls the relevance of this cluster 
into question. Similarly, when using a four-cluster solution, one cluster contains only 60 
objects. Hence, it appears more reasonable to retain the three-cluster solution.

This analysis concludes our cluster analysis. However, we could further explore the 
solution’s stability by running other linkage algorithms, such as centroid or complete 
linkage, on the data. Relatedly, we could use different (dis)similarity measures and assess 
their impact on the results. So go ahead and explore these options yourself!

9.4.2 Two-Step Clustering

In the  last step of the analysis, we run two-step clustering on the data. As two-step cluster-
ing allows handling segmentation variables measured on different scale levels, we extend 
the prior set and now also consider gender as an additional (categorical) segmentation 
variable. To initiate the analysis, go to ► Analyze ► Classify ► Two-Step Cluster. A new 
dialog box opens, similar to that shown in . Fig. 9.24. First, move gender into the Categor-
ical Variables box and e1, e5, e9, e21, and e22 into the Continuous Variables box.

Under Distance Measure we can choose between two options. While Log-likelihood can 
be used for categorical and continuous variables, the Euclidean distance requires variables 
measured on a continuous scale. Since our analysis contains both categorical and contin-
uous variables, we have to use the Log-likelihood distance measure.

Under Number of Clusters, we can specify a fixed number or a maximum number of 
clusters to retain from the data. One of two-step clustering’s major advantages is that it 
allows the automatic selection of the number of clusters on the grounds of information 

. Table 9.21 F-values for different numbers of clusters

F-values

Number of clusters k

2 3 4 5 6

e1 448.182 555.639 425.992 391.870 474.269

e5 830.757 458.807 306.988 272.402 290.935

e9 456.818 373.290 264.142 237.495 186.223

e21 734.041 490.399 453.413 479.337 312.860

e22 578.393 581.981 707.882 548.408 446.994

Total 3,048.191 2,460.116 2,158.417 1,929.512 1,711.281
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. Fig. 9.24 Two-step cluster analysis dialog box

criteria. In line with our previous analyses, we specify a maximum number of 5 clusters. 
Under Clustering Criterion, select Schwarz’s Bayesian Criterion (BIC) but to test the stabil-
ity of the solution, we will re-run the analysis using Akaike’s Information Criterion (AIC).

Under Options, we can select options related to outlier treatment, memory allocation, 
and variable standardization. Variables that are already standardized have to be assigned 
as such, but since this is not the case in our analysis, we can simply proceed.

Finally, under Output, we can specify additional variables for describing the resulting 
clusters. Select Create cluster membership variable and click on Continue followed by OK.

SPSS produces a very simple output, as shown in . Fig. 9.25. The upper part of the 
output describes the algorithm applied, the number of variables used (labeled input fea-
tures) and the final number of clusters retained from the data. In our case, the number of 
clusters is chosen according to BIC, which indicates a three-segment solution (the same 
holds when using AIC instead of BIC).

The lower part of the output (. Fig. 9.25) indicates the quality of the cluster solution. 
The silhouette measure of cohesion and separation reaches a value of less than 0.50, indi-
cating a fair cluster quality. We proceed with the analysis by double-clicking on the output. 
This will open up the model viewer (. Fig. 9.26), an evaluation tool that graphically pres-
ents the structure of the revealed clusters.

The model viewer provides us with two windows: The main view, which initially 
shows a model summary (left-hand side), and an auxiliary view, which initially features 

9
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Model Summary

Algorithm

Inputs

TwoStep

6

3

–1.0 –0.5 0.0 0.5 1.0

Poor Fair Good

Clusters

Cluster Quality

Silhouette measure of cohesion and separation

. Fig. 9.25 Two-step cluster analysis output

. Fig. 9.26 Additional options in the model viewer

the cluster sizes (right-hand side). At the bottom of each window (next to View), you 
can request different information on each of the clusters. To further analyze the clus-
ters, select Clusters in the main view and Predictor Importance in the auxiliary view 
(. Fig. 9.26).
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On the left of . Fig 9.26, we can now see a description of the three clusters, including 
their (relative) sizes. We find that the first cluster contains 40.2 % of the objects, the second 
cluster 33.5 % of the objects, and the third cluster contains 26.2 % of the objects. Further 
below, the output shows the distribution of the gender variable in each cluster. Moving 
the mouse over the boxes showing the clustering variable labels, SPSS shows their mean 
values as well as their relative importance in terms of predicting each object’s member-
ship per cluster. Darker shades (i.e., higher values in feature importance) denote the vari-
able’s greater importance for the clustering solution. Comparing the results, we learn that 
gender is by far the most important variable for each of the clusters, followed by e5 (“Oddjob 
Airways provides you with a very pleasant travel experience”), e21 (“Oddjob Airways 
makes traveling uncomplicated”), e9 (“Oddjob Airways gives you a sense of safety”), e22 
(“Oddjob Airways provides you with interesting on-board entertainment, service, and 
information sources”), and e1 (“with Oddjob Airways you will arrive on time”).6 Click-
ing on one of the boxes will show a graph with the frequency distribution of each cluster.

The auxiliary view on the right-hand side shows an overview of the variables’ overall 
importance for predicting the clustering solution (i.e., across all clusters). The model viewer 
provides us with additional options for visualizing the results or comparing clustering solu-
tions. It is worthwhile to simply play around with the different self-explanatory options. 
So go ahead and explore the model viewer’s features yourself!

9.5 Oh, James! (Case Study)

The James Bond movie series is one of the success stories of filmmaking. The movies are the 
longest continually running and the third-highest-grossing film series to date, which started in 
1962 with Dr. No, starring Sean Connery as James Bond. As of 2018, there have been 24 movies 
with six actors having played James Bond. Interested in the factors that contributed to this 
running success, you decide to investigate the different James Bond movies’ characteristics. 
Specifically, you want to find out whether the movies can be grouped into clusters, which 
differ in their box-office revenues. To do so, you draw on Internet Movie Database (www.imdb.
com) and collect data on all 24 movies based on the following variables (variable names in 
parentheses):
 5 Title. (title)
 5 Actor playing James Bond. (actor)
 5 Year of publication. (year)
 5 Budget in USD, adjusted for inflation. (budget)
 5 Box-office revenues in the USA, adjusted for inflation. (gross_usa)
 5 Box-office revenues worldwide, adjusted for inflation. (gross_worldwide)
 5 Runtime in minutes. (runtime)
 5 Native country of the villain actor. (villain_country)
 5 Native country of the bondgirl. (bondgirl_country)

Case Study

6 The strong emphasis of gender in determining the solution supports prior research, which found 
that two-step clustering puts greater emphasis on categorical variables in the results computation 
(Bacher et al. 2004).

9
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9.6  Review Questions

1. In your own words, explain the objective and basic concept of cluster analysis.
2. What are the differences between hierarchical and partitioning methods? When do 

we use hierarchical or partitioning methods?
3. Repeat the manual calculations of the hierarchical clustering procedure from 

the beginning of the chapter, but use complete linkage as the clustering method. 
Compare the results with those of the single linkage method.

4. Explain the different options to decide on the number of clusters to extract from the 
data. Should you rather on statistical measures or rather on practical reasoning?

5. Run the two-step clustering analysis on the Oddjob Airways data again (Oddjob.
sav, ↓ Web Appendix → Downloads) but with a prespecified number of four and five 
clusters. Compare your results with the original three-cluster solution.

6. Which clustering variables could be used to segment:
 4 The market for smartphones?
 4 The market for chocolate?
 4 The market for car insurances?
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